Skip to main content
Log in

Laser-induced Janus graphene/poly(p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 04 February 2023

This article has been updated

Abstract

Conventional firefighting clothing and fire masks can protect firemen’s safety to a certain extent, whereas cannot perceive environmental hazards and monitor their physical status in real time. Herein, we fabricated two kinds of Janus graphene/poly(p-phenylene benzobisoxazole) (PBO) fabrics by laser direct writing approach and evaluated their performance as intelligent firefighting clothes and fire masks. The results showed that the Janus graphene/PBO fabrics were virtually non-combustible and achieved the highest thermal protection time of 18.91 s ever reported in flame, which is due to the intrinsic flame-retardant nature of PBO fibers. The graphene/PBO woven fabrics-based sensor showed good repeatability and stability in human motion monitoring and NO2 gas detection. Furthermore, the piezoelectric fire mask was assembled with graphene/PBO nonwoven fabric as electrode layer and polyvinylidene fluoride (PVDF) electrostatic direct writing film as piezoelectric layer. The filtration efficiency of the fire mask reaches 95% for PM2.5 and 100% for PM3.0, indicating its effective filtration capability for smoke particles in fires. The respiratory resistance of the piezoelectric fire mask (46.8 Pa) was lower than that of commercial masks (49 Pa), showing that it has good wearing comfort. Besides, the piezoelectric fire mask can be sensitive to the speed and intensity of human breathing, which is essential for indirectly reflecting the health of the human body. Consequently, this work provides a facile approach to fabricate next-generation intrinsic flame-retardant smart textiles for smart firefighting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Fu, T.; Zhao, X.; Chen, L.; Wu, W. S.; Zhao, Q.; Wang, X. L.; Guo, D. M.; Wang, Y. Z. Bioinspired color changing molecular sensor toward early fire detection based on transformation of phthalonitrile to phthalocyanine. Adv. Funct. Mater. 2019, 29, 1806586.

    Google Scholar 

  2. Cascio, W. E. Wildland fire smoke and human health. Sci. Total Environ. 2018, 624, 586–595.

    CAS  Google Scholar 

  3. Barnard, J. E.; Scott, S.; Tennison, S.; Smith, M. W.; Burrows, A. D.; Perera, S.; Chew, Y. M. J. Low burden, adsorbent and heat absorbing structures for respiratory protection in building fires. Chem. Eng. J. 2021, 421, 127834.

    CAS  Google Scholar 

  4. Kahn, S. A.; Patel, J. H.; Lentz, C. W.; Bell, D. E. Firefighter burn injuries: Predictable patterns influenced by turnout gear. J. Burn Care Res. 2012, 33, 152–156.

    Google Scholar 

  5. Cheng, R. W.; Dong, K.; Liu, L. X.; Ning, C.; Chen, P. F.; Peng, X.; Liu, D.; Wang, Z. L. Flame-retardant textile-based triboelectric nanogenerators for fire protection applications. ACS Nano 2020, 14, 15853–15863.

    CAS  Google Scholar 

  6. Yin, F. F.; Guo, Y. J.; Li, H.; Yue, W. J.; Zhang, C. W.; Chen, D.; Geng, W.; Li, Y.; Gao, S.; Shen, G. Z. A waterproof and breathable cotton/rGO/CNT composite for constructing a layer-by-layer structured multifunctional flexible sensor. Nano Res. 2022, 15, 9341–9351.

    CAS  Google Scholar 

  7. Chen, W. C.; Fan, W.; Wang, Q.; Yu, X. C.; Luo, Y.; Wang, W. T.; Lei, R. X.; Li, Y. A nano-micro structure engendered abrasion resistant, superhydrophobic, wearable triboelectric yarn for self-powered sensing. Nano Energy 2022, 103, 107769.

    CAS  Google Scholar 

  8. Han, W. P.; Wu, Y. J.; Gong, H.; Liu, L. X.; Yan, J. X.; Li, M. F.; Long, Y. Z.; Shen, G. Z. Reliable sensors based on graphene textile with negative resistance variation in three dimensions. Nano Res. 2021, 14, 2810–2818.

    CAS  Google Scholar 

  9. Cheng, B. C.; Wu, P. Y. Scalable fabrication of Kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 2021, 15, 8676–8685.

    CAS  Google Scholar 

  10. He, H. L.; Liu, J. R.; Wang, Y. S.; Zhao, Y. H.; Qin, Y.; Zhu, Z. Y.; Yu, Z. C.; Wang, J. F. An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 2022, 16, 2953–2967.

    CAS  Google Scholar 

  11. Khan, F.; Wang, S. C.; Ma, Z. W.; Ahmed, A.; Song, P. A.; Xu, Z. G.; Liu, R. P.; Chi, H. J.; Gu, J. Y.; Tang, L. C. et al. A durable, flexible, large-area, flame-retardant, early fire warning sensor with built-in patterned electrodes. Small Methods 2021, 5, 2001040.

    CAS  Google Scholar 

  12. Wang, B. L.; Lai, X. J.; Li, H. Q.; Jiang, C. C.; Gao, J. F.; Zeng, X. R. Multifunctional MXene/chitosan-coated cotton fabric for intelligent fire protection. ACS Appl. Mater. Interfaces 2021, 13, 23020–23029.

    CAS  Google Scholar 

  13. Sun, P.; Cai, N. X.; Zhong, X. D.; Zhao, X. J.; Zhang, L.; Jiang, S. H. Facile monitoring for human motion on fireground by using MiEs-TENG sensor. Nano Energy 2021, 89, 106492.

    CAS  Google Scholar 

  14. Xia, S.; Wang, M.; Gao, G. H. Preparation and application of graphene-based wearable sensors. Nano Res. 2022, 15, 9850–9865.

    Google Scholar 

  15. Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.

    CAS  Google Scholar 

  16. Wang, Y.; Zhao, Y.; Li, X.; Jiang, L.; Qu, L. T. Laser-based growth and treatment of graphene for advanced photo- and electro-related device applications. Adv. Funct. Mater. 2022, 32, 2203164.

    CAS  Google Scholar 

  17. Peng, Y. Y.; Zhao, W. W.; Ni, F.; Yu, W. J.; Liu, X. Q. Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency. ACS Nano 2021, 15, 19490–19502.

    CAS  Google Scholar 

  18. Lamberti, A.; Serrapede, M.; Ferraro, G.; Fontana, M.; Perrucci, F.; Bianco, S.; Chiolerio, A.; Bocchini, S. All-SPEEK flexible supercapacitor exploiting laser-induced graphenization. 2D Mater. 2017, 4, 035012.

    Google Scholar 

  19. Singh, S. P.; Li, Y. L.; Zhang, J. B.; Tour, J. M.; Arnusch, C. J. Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes. ACS Nano 2018, 12, 289–297.

    CAS  Google Scholar 

  20. Ye, R. Q.; Han, X.; Kosynkin, D. V.; Li, Y. L.; Zhang, C. H.; Jiang, B.; Marti, A. A.; Tour, J. M. Laser-induced conversion of teflon into fluorinated nanodiamonds or fluorinated graphene. ACS Nano 2018, 12, 1083–1088.

    CAS  Google Scholar 

  21. Wang, H. M.; Wang, H. M.; Wang, Y. L.; Su, X. Y.; Wang, C. Y.; Zhang, M. C.; Jian, M. Q.; Xia, K. L.; Liang, X. P.; Lu, H. J. et al. Laser writing of janus graphene/Kevlar textile for intelligent protective clothing. ACS Nano 2020, 14, 3219–3226.

    CAS  Google Scholar 

  22. Hu, X. D.; Jenkins, S. E.; Min, B. G.; Polk, M. B.; Kumar, S. Rigidrod polymers: Synthesis, processing, simulation, structure, and properties. Macromol. Mater. Eng. 2003, 288, 823–843.

    CAS  Google Scholar 

  23. Liu, Z.; Fan, X. L.; Cheng, L.; Zhang, J. L.; Tang, L.; Tang, Y. S.; Kong, J.; Gu, J. W. Hybrid polymer membrane functionalized PBO fibers/cyanate esters wave-transparent laminated composites. Adv. Fiber Mater. 2022, 4, 520–531.

    CAS  Google Scholar 

  24. Chae, H. G.; Kumar, S. Rigid-rod polymeric fibers. J. Appl. Polym. Sci. 2006, 100, 791–802.

    CAS  Google Scholar 

  25. Qian, Z. C.; Li, R.; Guo, J.; Wang, Z.; Li, X. F.; Li, C. C.; Zhao, N.; Xu, J. Triboelectric nanogenerators made of polybenzazole aerogels as fire-resistant negative tribo-materials. Nano Energy 2019, 64, 103900.

    CAS  Google Scholar 

  26. Bourbigot, S.; Flambard, X. Heat resistance and flammability of high performance fibres: A review. Fire Mater. 2002, 26, 155–168.

    CAS  Google Scholar 

  27. Vivaldi, F. M.; Dallinger, A.; Bonini, A.; Poma, N.; Sembranti, L.; Biagini, D.; Salvo, P.; Greco, F.; Di Francesco, F. Three-dimensional (3D) laser-induced graphene: Structure, properties, and application to chemical sensing. ACS Appl. Mater. Interfaces 2021, 13, 30245–30260.

    CAS  Google Scholar 

  28. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    CAS  Google Scholar 

  29. Cao, L. J.; Zhu, S. R.; Pan, B. H.; Dai, X. Y.; Zhao, W. W.; Liu, Y.; Xie, W. P.; Kuang, Y. B.; Liu, X. Q. Stable and durable laser-induced graphene patterns embedded in polymer substrates. Carbon 2020, 163, 85–94.

    CAS  Google Scholar 

  30. Meng, X.; Fan, W.; Mahari, W. A. W.; Ge, S. B.; Xia, C. L.; Wu, F.; Han, L.; Wang, S. J.; Zhang, M. L.; Hu, Z. et al. Production of three-dimensional fiber needle-punching composites from denim waste for utilization as furniture materials. J. Cleaner Prod. 2021, 281, 125321.

    CAS  Google Scholar 

  31. Debnath, S.; Chauhan, V. K.; Singh, J. P. Air permeability of needle-punched filter media-virgin and recycled polyester. J. Text. Inst. 2020, 111, 1159–1165.

    CAS  Google Scholar 

  32. Das, A.; Alagirusamy, R.; Nagendra, K. R. Filtration characteristics of spun-laid nonwoven fabrics. Indian J. Fibre Text. Res. 2009, 34, 253–257.

    CAS  Google Scholar 

  33. Maurya, S. K.; Somkuwar, V. U.; Garg, H.; Das, A.; Kumar, B. Thermal protective performance of single-layer rib-knitted structure and its derivatives under radiant heat flux. J. Ind. Text. 2022, 51, 8865S–8883S.

    Google Scholar 

  34. Kothari, V. K.; Chakraborty, S. Thermal protective performance of clothing exposed to radiant heat. J. Text. Inst. 2015, 106, 1388–1393.

    CAS  Google Scholar 

  35. Sun, G.; Yoo, H. S.; Zhang, X. S.; Pan, N. Radiant protective and transport properties of fabrics used by wildland firefighters. Text. Res. J. 2000, 70, 567–573.

    CAS  Google Scholar 

  36. Kothari, V. K.; Chakraborty, S. Protective performance of thermal protective clothing assemblies exposed to different radiant heat fluxes. Fibers Polym. 2016, 17, 809–814.

    Google Scholar 

  37. Ahmed, A.; El-Kady, M. F.; Hassan, I.; Negm, A.; Pourrahimi, A. M.; Muni, M.; Selvaganapathy, P. R.; Kaner, R. B. Fire-retardant, self-extinguishing triboelectric nanogenerators. Nano Energy 2011, 59, 336–345.

    Google Scholar 

  38. Guan, Q. B.; Lu, X.; Chen, Y. Y.; Zhang, H. Y.; Zheng, Y. X.; Neisiany, R. E.; You, Z. W. High-performance liquid crystalline polymer for intrinsic fire-resistant and flexible triboelectric nanogenerators. Adv. Mater. 2022, 34, 2204543.

    CAS  Google Scholar 

  39. Yang, S. T.; Li, C. W.; Chen, X. Y.; Zhao, Y. P.; Zhang, H.; Wen, N. X.; Fan, Z.; Pan, L. J. Facile fabrication of high-performance pen ink-decorated textile strain sensors for human motion detection. ACS Appl. Mater. Interfaces 2020, 12, 19874–19881.

    CAS  Google Scholar 

  40. Chen, Z.; Wang, J. R.; Pan, D. X.; Wang, Y.; Noetzel, R.; Li, H.; Xie, P.; Pei, W. L.; Umar, A.; Jiang, L. et al. Mimicking a dog’s nose: Scrolling graphene nanosheets. ACS Nano 2018, 12, 2521–2530.

    CAS  Google Scholar 

  41. Alves, C. A.; Gonçalves, C.; Pio, C. A.; Mirante, F.; Caseiro, A.; Tarelho, L.; Freitas, M. C.; Viegas, D. X. Smoke emissions from biomass burning in a mediterranean shrubland. Atmos. Environ. 2010, 44, 3024–3033.

    CAS  Google Scholar 

  42. Costa, M. A. M.; Carvalho, J. A. Jr.; Neto, T. G. S.; Anselmo, E.; Lima, B. A.; Kura, L. T. U.; Santos, J. C. Real-time sampling of particulate matter smaller than 2.5 µm from Amazon forest biomass combustion. Atmos. Environ. 2012, 54, 480–489.

    CAS  Google Scholar 

  43. Ye, X. R.; Shi, B. H.; Li, M.; Fan, Q.; Qi, X. J.; Liu, X. H.; Zhao, S. K.; Jiang, L.; Zhang, X. J.; Fu, K. et al. All-textile sensors for boxing punch force and velocity detection. Nano Energy 2022, 97, 107114.

    CAS  Google Scholar 

  44. Fan, W.; Zhang, G.; Zhang, X. L.; Dong, K.; Liang, X. P.; Chen, W. C.; Yu, L. J.; Zhang, Y. Y. Superior unidirectional water transport and mechanically stable 3D orthogonal woven fabric for human body moisture and thermal management. Small 2022, 18, 2107150.

    CAS  Google Scholar 

  45. Xue, L. L.; Fan, W.; Yu, Y.; Dong, K.; Liu, C. K.; Sun, Y. L.; Zhang, C.; Chen, W. C.; Lei, R. X.; Rong, K. et al. A novel strategy to fabricate core-sheath structure piezoelectric yarns for wearable energy harvesters. Adv. Fiber Mater. 2021, 3, 239–250.

    CAS  Google Scholar 

  46. Kang, J. Y.; Liu, T.; Lu, Y.; Lu, L. L.; Dong, K.; Wang, S. J.; Li, B.; Yao, Y.; Bai, Y.; Fan, W. Polyvinylidene fluoride piezoelectric yarn for real-time damage monitoring of advanced 3D textile composites. Compos. Part B: Eng. 2022, 245, 110229.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52073224 and 52202111), the Textile Vision Basic Research Program of China (No. J202110), the Key Research and Development Program of Xianyang Science and Technology Bureau, China (No. 2021ZDYF-GY-0035), the Key Research and Development Program of Shaanxi Province, China (No. 2022SF-470), the Key Research and Development Program of Shaanxi Province, China (No. 2022GY-377), the Natural Science Foundation of Shaanxi Province (No. 2021JQ-685), and the Scientific Research Project of Shaanxi Provincial Education Department, China (No. 22JC035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Fan.

Electronic Supplementary Material

12274_2023_5382_MOESM1_ESM.pdf

Laser-induced Janus graphene/poly(p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field

Supplementary material, approximately 3.72 MB.

Supplementary material, approximately 9.79 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Miao, Y., Wang, H. et al. Laser-induced Janus graphene/poly(p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field. Nano Res. 16, 7600–7608 (2023). https://doi.org/10.1007/s12274-023-5382-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5382-y

Keywords

Navigation