Skip to main content
Log in

Liposome-coated CaO2 nanoblockers for enhanced checkpoint blockade therapy by inhibiting PD-L1 de novo biosynthesis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The blocking of the immune checkpoint pathway with antibodies, especially targeting to programmed death-1/programmed death ligand-1 (PD-1/PD-L1) pathway, was currently a widely used treatment strategy in clinical practice. However, the shortcomings of PD-L1 antibodies were constantly exposed with the deepening of its research and their therapeutic effect was limited by the translocation and redistribution of intracellular PD-L1. Herein, we proposed to improve immune checkpoint blockade therapy by using liposomes-coated CaO2 (CaO2@Lipo) nanoparticles to inhibit the de novo biosynthesis of PD-L1. CaO2@Lipo would produce oxygen and reduce hypoxia-inducible factor-1α (HIF-1α) level, which then downregulated the expression of PD-L1. Our in vitro and in vivo results have confirmed CaO2@Lipo promoted the degradation of HIF-1α and then downregulated the expression of PD-L1 in cancer cells for avoiding immune escape. Furthermore, to mimicking the clinical protocol of anti-PD-L1 antibodies + chemo-drugs, CaO2@Lipo was combined with doxorubicin (DOX) to investigate the tumor inhibition efficiency. We found CaO2@Lipo enhanced DOX-induced immunogenic cell death (ICD) effect, which then promoted the infiltration of T cells, strengthened the blocking effect, and thus provided an effective means to overcome the traditional immune checkpoint blockade treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ribas, A.; Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355.

    Article  CAS  Google Scholar 

  2. Sun, C.; Mezzadra, R.; Schumacher, T. N. Regulation and function of the PD-L1 checkpoint. Immunity 2018, 48, 434–452.

    Article  CAS  Google Scholar 

  3. Han, X.; Shen, S. F.; Fan, Q.; Chen, G. J.; Archibong, E.; Dotti, G.; Liu, Z.; Gu, Z.; Wang, C. Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. Sci. Adv. 2019, 5, eaaw6870.

    Article  CAS  Google Scholar 

  4. Dai, H. X.; Fan, Q.; Wang, C. Recent applications of immunomodulatory biomaterials for disease immunotherapy. Exploration, in press, https://doi.org/10.1002/EXP.20210157.

  5. Smit, E. F.; de Langen, A. J. Pembrolizumab for all PD-L1-positive NSCLC. Lancet 2019, 393, 1776–1778.

    Article  Google Scholar 

  6. Li, L. Y.; Miao, Q. W.; Meng, F. Q.; Li, B. Q.; Xue, T. Y.; Fang, T. L.; Zhang, Z. R.; Zhang, J. X.; Ye, X. Y.; Kang, Y. et al. Genetic engineering cellular vesicles expressing CD64 as checkpoint antibody carrier for cancer immunotherapy. Theranostics 2021, 11, 6033–6043.

    Article  CAS  Google Scholar 

  7. Han, X.; Li, H. J.; Zhou, D. J.; Chen, Z. W.; Gu, Z. Local and targeted delivery of immune checkpoint blockade therapeutics. Acc. Chem. Res. 2020, 53, 2521–2533.

    Article  CAS  Google Scholar 

  8. Voorwerk, L.; Slagter, M.; Horlings, H. M.; Sikorska, K.; van de Vijver, K. K.; de Maaker, M.; Nederlof, I.; Kluin, R. J. C.; Warren, S.; Ong, S. et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: The TONIC trial. Nat. Med. 2019, 25, 920–928.

    Article  CAS  Google Scholar 

  9. Ascierto, P. A.; Long, G. V.; Robert, C.; Brady, B.; Dutriaux, C.; Di Giacomo, A. M.; Mortier, L.; Hassel, J. C.; Rutkowski, P.; McNeil, C. et al. Survival outcomes in patients with previously untreated BRAF wild-type advanced melanoma treated with nivolumab therapy: Three-year follow-up of a randomized phase 3 trial. JAMA Oncol. 2019, 5, 187–194.

    Article  Google Scholar 

  10. Yao, H.; Lan, J.; Li, C. S.; Shi, H. B.; Brosseau, J. P.; Wang, H. B.; Lu, H. J.; Fang, C. Y.; Zhang, Y.; Liang, L. X. et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat. Biomed. Eng. 2019, 3, 306–317.

    Article  CAS  Google Scholar 

  11. Burr, M. L.; Sparbier, C. E.; Chan, Y. C.; Williamson, J. C.; Woods, K.; Beavis, P. A.; Lam, E. Y. N.; Henderson, M. A.; Bell, C. C.; Stolzenburg, S. et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 2017, 549, 101–105.

    Article  CAS  Google Scholar 

  12. Han, X. Y.; Wang, L. L.; Li, T.; Zhang, J. H.; Zhang, D. L.; Li, J. L.; Xia, Y. H.; Liu, Y. L.; Tan, W. H. Beyond blocking: Engineering RNAi-mediated targeted immune checkpoint nanoblocker enables T-cell-independent cancer treatment. ACS Nano 2020, 14, 17524–17534.

    Article  CAS  Google Scholar 

  13. Zhao, L.; Luo, Y. L.; Huang, Q. Y.; Cao, Z. Y.; Yang, X. Z. Photo-enhanced CRISPR/Cas9 system enables robust PD-L1 gene disruption in cancer cells and cancer stem-like cells for efficient cancer immunotherapy. Small 2020, 16, 2004879.

    Article  CAS  Google Scholar 

  14. Tang, H. L.; Xu, X. J.; Chen, Y. X.; Xin, H. H.; Wan, T.; Li, B. W.; Pan, H. M.; Li, D.; Ping, Y. Reprogramming the tumor microenvironment through second-near-infrared-window photothermal genome editing of PD-L1 mediated by supramolecular gold nanorods for enhanced cancer immunotherapy. Adv. Mater. 2021, 33, 2006003.

    Article  CAS  Google Scholar 

  15. Tu, K.; Deng, H.; Kong, L.; Wang, Y.; Yang, T.; Hu, Q.; Hu, M.; Yang, C. L.; Zhang, Z. P. Reshaping tumor immune microenvironment through acidity-responsive nanoparticles featured with CRISPR/Cas9-mediated programmed death-ligand 1 attenuation and chemotherapeutics-induced immunogenic cell death. ACS Appl. Mater. Interfaces 2020, 12, 16018–16030.

    Article  CAS  Google Scholar 

  16. Xu, Z. K.; Wang, Q. N.; Zhong, H. P.; Jiang, Y. Y.; Shi, X. G.; Yuan, B.; Yu, N.; Zhang, S. B.; Yuan, X. Y.; Guo, S. T. et al. Carrier strategies boost the application of CRISPR/Cas system in gene therapy. Exploration 2022, 2, 20210081.

    Article  Google Scholar 

  17. Manghwar, H.; Li, B.; Ding, X.; Hussain, A.; Lindsey, K.; Zhang, X. L.; Jin, S. X. CRISPR/Cas systems in genome editing: Methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv. Sci. 2020, 7, 1902312.

    Article  CAS  Google Scholar 

  18. Verdera, H. C.; Kuranda, K.; Mingozzi, F. AAV vector immunogenicity in humans: A long journey to successful gene transfer. Mol. Ther. 2020, 28, 723–746.

    Article  CAS  Google Scholar 

  19. Halligan, D. N.; Murphy, S. J. E.; Taylor, C. T. The hypoxia-inducible factor (HIF) couples immunity with metabolism. Semin. Immunol. 2016, 28, 469–477.

    Article  CAS  Google Scholar 

  20. Noman, M. Z.; Desantis, G.; Janji, B.; Hasmim, M.; Karray, S.; Dessen, P.; Bronte, V.; Chouaib, S. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 2014, 211, 781–790.

    Article  CAS  Google Scholar 

  21. Barsoum, I. B.; Smallwood, C. A.; Siemens, D. R.; Graham, C. H. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 2014, 74, 665–674.

    Article  CAS  Google Scholar 

  22. Ding, X. C.; Wang, L. L.; Zhang, X. D.; Xu, J. L.; Li, P. F.; Liang, H.; Zhang, X. B.; Xie, L.; Zhou, Z. H.; Yang, J. et al. The relationship between expression of PD-L1 and HIF-1α in glioma cells under hypoxia. J. Hematol. Oncol. 2021, 14, 92.

    Article  CAS  Google Scholar 

  23. Luo, J. C.; Shibuya, M. A variant of nuclear localization signal of bipartite-type is required for the nuclear translocation of hypoxia inducible factors (1α, 2α and 3α). Oncogene 2001, 20, 1435–1444.

    Article  CAS  Google Scholar 

  24. Qian, X. K.; Zhang, Q.; Shao, N.; Shan, Z.; Cheang, T.; Zhang, Z. Q.; Su, Q.; Wang, S. M.; Lin, Y. Respiratory hyperoxia reverses immunosuppression by regulating myeloid-derived suppressor cells and PD-L1 expression in a triple-negative breast cancer mouse model. Am. J. Cancer Res. 2019, 9, 529–545.

    CAS  Google Scholar 

  25. Gao, S. T.; Jin, Y.; Ge, K.; Li, Z. H.; Liu, H. F.; Dai, X. Y.; Zhang, Y. H.; Chen, S. Z.; Liang, X. J.; Zhang, J. C. Self-supply of O2 and H2O2 by a nanocatalytic medicine to enhance combined chemo/chemodynamic therapy. Adv. Sci. 2019, 6, 1902137.

    Article  CAS  Google Scholar 

  26. Jana, D.; Zhao, Y. L. Strategies for enhancing cancer chemodynamic therapy performance. Exploration 2022, 2, 20210238.

    Article  Google Scholar 

  27. Lv, F. F.; Liu, H. F.; Zhao, G. Q.; Zhao, E. M.; Yan, H. Y.; Che, R. J.; Yang, X. J.; Zhou, X. H.; Zhang, J. C.; Liang, X. J. et al. Therapeutic exosomal vaccine for enhanced cancer immunotherapy by mediating tumor microenvironment. iScience 2022, 25, 103639.

    Article  CAS  Google Scholar 

  28. Obeid, M.; Tesniere, A.; Ghiringhelli, F.; Fimia, G. M.; Apetoh, L.; Perfettini, J. L.; Castedo, M.; Mignot, G.; Panaretakis, T.; Casares, N. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 2007, 13, 54–61.

    Article  CAS  Google Scholar 

  29. Xie, L. S.; Wang, G. H.; Sang, W.; Li, J.; Zhang, Z.; Li, W. X.; Yan, J.; Zhao, Q.; Dai, Y. L. Phenolic immunogenic cell death nanoinducer for sensitizing tumor to PD-1 checkpoint blockade immunotherapy. Biomaterials 2021, 269, 120638.

    Article  CAS  Google Scholar 

  30. Ding, Y. Y.; Wang, Y. X.; Hu, Q. Y. Recent advances in overcoming barriers to cell-based delivery systems for cancer immunotherapy. Exploration 2022, 2, 20210106.

    Article  Google Scholar 

  31. Liu, L. H.; Zhang, Y. H.; Qiu, W. X.; Zhang, L.; Gao, F.; Li, B.; Xu, L.; Fan, J. X.; Li, Z. H.; Zhang, X. Z. Dual-stage light amplified photodynamic therapy against hypoxic tumor based on an O2 self-sufficient nanoplatform. Small 2017, 13, 1701621.

    Article  Google Scholar 

  32. Li, Z. W.; Rong, L. Cascade reaction-mediated efficient ferroptosis synergizes with immunomodulation for high-performance cancer therapy. Biomater. Sci. 2020, 8, 6272–6285.

    Article  CAS  Google Scholar 

  33. Shen, S.; Mamat, M.; Zhang, S. C.; Cao, J.; Hood, Z. D.; Figueroa-Cosme, L.; Xia, Y. N. Synthesis of CaO2 nanocrystals and their spherical aggregates with uniform sizes for use as a biodegradable bacteriostatic agent. Small 2019, 15, 1902118.

    Article  Google Scholar 

  34. Yu, Q.; Huang, T. C.; Liu, C.; Zhao, M. L.; Xie, M. J.; Li, G.; Liu, S. J.; Huang, W.; Zhao, Q. Oxygen self-sufficient NIR-activatable liposomes for tumor hypoxia regulation and photodynamic therapy. Chem. Sci. 2019, 10, 9091–9098.

    Article  CAS  Google Scholar 

  35. He, C. C.; Zhang, X. J.; Yan, R. C.; Zhao, P. X.; Chen, Y.; Li, M. S.; Chen, C.; Fan, T.; Lu, Y.; Wang, C. et al. Enhancement of cisplatin efficacy by lipid-CaO2 nanocarrier-mediated comprehensive modulation of the tumor microenvironment. Biomater. Sci. 2019, 7, 4260–4272.

    Article  CAS  Google Scholar 

  36. Xu, J. L.; Ma, Q. L.; Zhang, Y.; Fei, Z. Y.; Sun, Y. F.; Fan, Q.; Liu, B.; Bai, J. Y.; Yu, Y.; Chu, J. H. et al. Yeast-derived nanoparticles remodel the immunosuppressive microenvironment in tumor and tumor-draining lymph nodes to suppress tumor growth. Nat. Commun. 2022, 13, 110.

    Article  CAS  Google Scholar 

  37. Fucikova, J.; Spisek, R.; Kroemer, G.; Galluzzi, L. Calreticulin and cancer. Cell Res. 2021, 31, 5–16.

    Article  CAS  Google Scholar 

  38. Vultaggio-Poma, V.; Sarti, A. C.; Di Virgilio, F. Extracellular ATP: A feasible target for cancer therapy. Cells 2020, 9, 2496.

    Article  CAS  Google Scholar 

  39. Teo Hansen Selnø, A.; Schlichtner, S.; Yasinska, I. M.; Sakhnevych, S. S.; Fiedler, W.; Wellbrock, J.; Berger, S. M.; Klenova, E.; Gibbs, B. F.; Fasler-Kan, E. et al. High mobility group box 1 (HMGB1) induces toll-like receptor 4-mediated production of the immunosuppressive protein galectin-9 in human cancer cells. Front. Immunol. 2021, 12, 675731.

    Article  Google Scholar 

  40. Zheng, P.; Ding, B. B.; Jiang, Z. Y.; Xu, W. G.; Li, G.; Ding, J. X.; Chen, X. S. Ultrasound-augmented mitochondrial calcium ion overload by calcium nanomodulator to induce immunogenic cell death. Nano Lett. 2021, 21, 2088–2093.

    Article  CAS  Google Scholar 

  41. Fan, M.; Liu, H. F.; Yan, H. Y.; Che, R. J.; Jin, Y.; Yang, X. J.; Zhou, X. H.; Yang, H.; Ge, K.; Liang, X. J. et al. A CAR T-inspiring platform based on antibody-engineered exosomes from antigen-feeding dendritic cells for precise solid tumor therapy. Biomaterials 2022, 282, 121424.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 31971304, 32271420, and 21977024), the Beijing-Tianjin-Hebei Basic Research Cooperation Project (No. 19JCZDJC64100), Cross-disciplinary Project of Hebei University (No. DXK201916), One Hundred Talent Project of Hebei Province (No. E2018100002), Science Fund for Creative Research Groups of Nature Science Foundation of Hebei Province (No. B2021201038), and Guangdong Basic and Applied Basic Research Foundation (No. 2021B1515120065). We are grateful to Medical Comprehensive Experimental Center of Hebei University for the animal experiment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinchao Zhang or Zhenhua Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, R., Han, D., Wang, F. et al. Liposome-coated CaO2 nanoblockers for enhanced checkpoint blockade therapy by inhibiting PD-L1 de novo biosynthesis. Nano Res. 16, 7227–7236 (2023). https://doi.org/10.1007/s12274-022-5362-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5362-7

Keywords

Navigation