Skip to main content
Log in

Near-infrared light-driven multifunctional metal ion (Cu2+)-loaded polydopamine nanomotors for therapeutic angiogenesis in critical limb ischemia

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Most of the current nanomedicine-based treatments for critical limb ischemia (CLI) only aim at promoting angiogenesis, ignoring the negative influence on the therapeutic effects caused by the complex pathological micro-environment of ischemic tissue. Herein, near-infrared (NIR) light-driven metal ion (Cu2+)-loaded polydopamine (PDA) nanomotors (JMPN@Cu2+) is designed and prepared. Due to the good antioxidant and anti-inflammatory activities of PDA, JMPN@Cu2+ exhibits excellent biocompatibility and significantly improves the ischemic micro-environment. Additionally, based on superior photothermal conversion effect and jellyfish-like structure, the nanomotors are quickly propelled under NIR laser with low energy intensity to acquire the ability of movement and facilitate intracellular uptake of JMPN@Cu2+ by endothelial cells, resulting in the enhanced pro-angiogenic effect of Cu2+. Moreover, in vivo experimental findings show that JMPN@Cu2+ combined with NIR irradiation can successfully accelerate blood flow recovery and improve muscle repair. Taking these results together, this kind of nanomotor can promote angiogenesis along with ischemic micro-environment amelioration, holding great potential applications for the treatment of limb ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shishehbor, M. H.; White, C. J.; Gray, B. H.; Menard, M. T.; Lookstein, R.; Rosenfield, K.; Jaff, M. R. Critical limb ischemia: An expert statement. J. Am. Coll. Cardiol. 2016, 68, 2002–2015.

    Google Scholar 

  2. Abdulhannan, P.; Russell, D. A.; Homer-Vanniasinkam, S. Peripheral arterial disease: A literature review. Br. Med. Bull. 2012, 104, 21–39.

    CAS  Google Scholar 

  3. BASIL Trial Participants. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): Multicentre, randomised controlled trial. Lancet 2005, 366, 1925–1934.

    Google Scholar 

  4. Bradbury, A. W.; Adam, D. J.; Bell, J.; Forbes, J. F.; Fowkes, F. G. R.; Gillespie, I.; Ruckley, C. V.; Raab, G. M. Bypass versus angioplasty in severe ischaemia of the leg (BASIL) trial: Analysis of amputation free and overall survival by treatment received. J. Vasc. Surg. 2010, 51, 18S–31S.

    Google Scholar 

  5. Fadini, G. P.; Agostini, C.; Avogaro, A. Autologous stem cell therapy for peripheral arterial disease: Meta-analysis and systematic review of the literature. Atherosclerosis 2010, 209, 10–17.

    CAS  Google Scholar 

  6. Idei, N.; Soga, J.; Hata, T.; Fujii, Y.; Fujimura, N.; Mikami, S.; Maruhashi, T.; Nishioka, K.; Hidaka, T.; Kihara, Y. et al. Autologous bone-marrow mononuclear cell implantation reduces long-term major amputation risk in patients with critical limb ischemia: A comparison of atherosclerotic peripheral arterial disease and buerger disease. Circ. Cardiovasc. Interv. 2011, 4, 15–25.

    Google Scholar 

  7. Tongers, J.; Roncalli, J. G.; Losordo, D. W. Therapeutic angiogenesis for critical limb ischemia: Microvascular therapies coming of age. Circulation 2008, 118, 9–16.

    Google Scholar 

  8. Forster, R.; Liew, A.; Bhattacharya, V.; Shaw, J.; Stansby, G. Gene therapy for peripheral arterial disease. Cochrane Database Syst. Rev. 2018, 10, CD012058.

    Google Scholar 

  9. Rigato, M.; Monami, M.; Fadini, G. P. Autologous cell therapy for peripheral arterial disease: Systematic review and meta-analysis of randomized, nonrandomized, and noncontrolled studies. Circ. Res. 2017, 120, 1326–1340.

    CAS  Google Scholar 

  10. Signorelli, S. S.; Scuto, S.; Marino, E.; Xourafa, A.; Gaudio, A. Oxidative stress in peripheral arterial disease (PAD) mechanism and biomarkers. Antioxidants 2019, 8, 367.

    CAS  Google Scholar 

  11. Koutakis, P.; Ismaeel, A.; Farmer, P.; Purcell, S.; Smith, R. S.; Eidson, J. L.; Bohannon, W. T. Oxidative stress and antioxidant treatment in patients with peripheral artery disease. Physiol. Rep. 2018, 6, e13650.

    Google Scholar 

  12. Ni, L.; Li, T. J.; Liu, B.; Song, X. T.; Yang, G. H.; Wang, L. F.; Miao, S. Y.; Liu, C. W. The protective effect of Bcl-xl overexpression against oxidative stress-induced vascular endothelial cell injury and the role of the Akt/eNOS pathway. Int. J. Mol. Sci. 2013, 14, 22149–22162.

    Google Scholar 

  13. Mandinov, L.; Mandinova, A.; Kyurkchiev, S.; Kyurkchiev, D.; Kehayov, I.; Kolev, V.; Soldi, R.; Bagala, C.; de Muinck, E. D.; Lindner, V. et al. Copper chelation represses the vascular response to injury. Proc. Natl. Acad. Sci. USA 2003, 100, 6700–6705.

    CAS  Google Scholar 

  14. Dioufa, N.; Schally, A. V.; Chatzistamou, I.; Moustou, E.; Block, N. L.; Owens, G. K.; Papavassiliou, A. G.; Kiaris, H. Acceleration of wound healing by growth hormone-releasing hormone and its agonists. Proc. Natl. Acad. Sci. USA 2010, 107, 18611–18615.

    CAS  Google Scholar 

  15. Hoppe, A.; Güldal, N. S.; Boccaccini, A. R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011, 32, 2757–2774.

    CAS  Google Scholar 

  16. Chandrasekar, V.; Singh, A. V.; Maharjan, R. S.; Dakua, S. P.; Balakrishnan, S.; Dash, S.; Laux, P.; Luch, A.; Singh, S.; Pradhan, M. Perspectives on the technological aspects and biomedical applications of virus-like particles/nanoparticles in reproductive biology: Insights on the medicinal and toxicological outlook. Adv. NanoBiomed Res. 2022, 2, 2200010.

    CAS  Google Scholar 

  17. Xu, X. X.; Ding, M. H.; Zhang, J. X.; Zheng, W.; Li, L.; Zheng, Y. F. A novel copper/polydimethiylsiloxane nanocomposite for copper-containing intrauterine contraceptive devices. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101, 1428–1436.

    CAS  Google Scholar 

  18. Hanagata, N.; Zhuang, F.; Connolly, S.; Li, J.; Ogawa, N.; Xu, M. S. Molecular responses of human lung epithelial cells to the toxicity of copper oxide nanoparticles inferred from whole genome expression analysis. ACS Nano 2011, 5, 9326–9338.

    CAS  Google Scholar 

  19. Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283, 65–87.

    CAS  Google Scholar 

  20. Dong, Z. L.; Gong, H.; Gao, M.; Zhu, W. W.; Sun, X. Q.; Feng, L. Z.; Fu, T. T.; Li, Y. G.; Liu, Z. Polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy. Theranostics 2016, 6, 1031–1042.

    CAS  Google Scholar 

  21. Zhao, H.; Chao, Y.; Liu, J. J.; Huang, J.; Pan, J.; Guo, W. L.; Wu, J. Z.; Sheng, M.; Yang, K.; Wang, J. et al. Polydopamine coated singlewalled carbon nanotubes as a versatile platform with radionuclide labeling for multimodal tumor imaging and therapy. Theranostics 2016, 6, 1833–1843.

    CAS  Google Scholar 

  22. Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 144, 5057–5115.

    Google Scholar 

  23. Lin, L. S.; Cong, Z. X.; Cao, J. B.; Ke, K. M.; Peng, Q. L.; Gao, J. H.; Yang, H. H.; Liu, G.; Chen, X. Y. Multifunctional Fe3O4@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 2014, 8, 3876–3883.

    CAS  Google Scholar 

  24. Chen, Y.; Ai, K. L.; Liu, J. H.; Ren, X. Y.; Jiang, C. H.; Lu, L. H. Polydopamine-based coordination nanocomplex for T1/T2 dual mode magnetic resonance imaging-guided chemo-photothermal synergistic therapy. Biomaterials 2016, 77, 198–206.

    CAS  Google Scholar 

  25. Xing, Y. X.; Zhang, J. X.; Chen, F.; Liu, J. J.; Cai, K. Y. Mesoporous polydopamine nanoparticles with co-delivery function for overcoming multidrug resistance via synergistic chemo-photothermal therapy. Nanoscale 2017, 9, 8781–8790.

    CAS  Google Scholar 

  26. Zeng, Y. Y.; Zhang, D.; Wu, M.; Liu, Y.; Zhang, X.; Li, L.; Li, Z.; Han, X.; Wei, X. Y.; Liu, X. L. Lipid-AuNPs@PDA nanohybrid for MRI/CT imaging and photothermal therapy of hepatocellular carcinoma. ACS Appl. Mater. Interfaces 2014, 6, 14266–14277.

    CAS  Google Scholar 

  27. Dai, Y.; Yang, D. P.; Yu, D. P.; Cao, C.; Wang, Q. H.; Xie, S. H.; Shen, L.; Feng, W.; Li, F. Y. Mussel-inspired polydopamine-coated lanthanide nanoparticles for NIR-II/CT dual imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2017, 9, 26674–26683.

    CAS  Google Scholar 

  28. Yao, S.; Li, X. Q.; Liu, J. X.; Sun, Y. Q.; Wang, Z. H.; Jiang, Y. Y. Maximized nanodrug-loaded mesenchymal stem cells by a dual drug-loaded mode for the systemic treatment of metastatic lung cancer. Drug Deliv. 2017, 24, 1372–1383.

    CAS  Google Scholar 

  29. Ju, K. Y.; Lee, Y.; Lee, S.; Park, S. B.; Lee, J. K. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules 2011, 12, 625–632.

    CAS  Google Scholar 

  30. Li, T.; Chen, T. T.; Chen, H.; Wang, Q.; Liu, Z. Y.; Fang, L. Y.; Wan, M. M.; Mao, C.; Shen, J. Engineered platelet-based micro/nanomotors for cancer therapy. Small 2021, 17, 2104912.

    CAS  Google Scholar 

  31. Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

    CAS  Google Scholar 

  32. Xu, T. L.; Gao, W.; Xu, L. P.; Zhang, X. J.; Wang, S. T. Fuel-free synthetic micro-/nanomachines. Adv. Mater. 2017, 29, 1603250.

    Google Scholar 

  33. Xing, Y.; Zhou, M. Y.; Xu, T. L.; Tang, S. S.; Fu, Y.; Du, X.; Su, L.; Wen, Y. Q.; Zhang, X. J.; Ma, T. Y. Core@satellite Janus nanomotors with pH-responsive multi-phoretic propulsion. Angew. Chem., Int. Ed. 2020, 59, 14368–14372.

    CAS  Google Scholar 

  34. Gao, C. Y.; Wang, Y.; Ye, Z. H.; Lin, Z. H.; Ma, X.; He, Q. Biomedical micro-/nanomotors: From overcoming biological barriers to in vivo imaging. Adv. Mater. 2021, 33, 2000512.

    CAS  Google Scholar 

  35. Shao, J. X.; Abdelghani, M.; Shen, G. Z.; Cao, S. P.; Williams, D. S.; van Hest, J. C. M. Erythrocyte membrane modified Janus polymeric motors for thrombus therapy. ACS Nano 2018, 12, 4877–4885.

    CAS  Google Scholar 

  36. Wan, M. M.; Chen, H.; Wang, Q.; Niu, Q.; Xu, P.; Yu, Y. Q.; Zhu, T. Y.; Mao, C.; Shen, J. Bio-inspired nitric-oxide-driven nanomotor. Nat. Commun. 2019, 10, 966.

    Google Scholar 

  37. Xuan, M. J.; Shao, J. X.; Gao, C. Y.; Wang, W.; Dai, L. R.; He, Q. Self-propelled nanomotors for thermomechanically percolating cell membranes. Angew. Chem., Int. Ed. 2018, 57, 12463–12467.

    CAS  Google Scholar 

  38. Wang, W.; Wu, Z. G.; Lin, X. K.; Si, T. Y.; He, Q. Gold-nanoshell-functionalized polymer nanoswimmer for photomechanical poration of single-cell membrane. J. Am. Chem. Soc. 2019, 141, 6601–6608.

    CAS  Google Scholar 

  39. Zhou, D. K.; Li, Y. C.; Xu, P. T.; Ren, L. Q.; Zhang, G. Y.; Mallouk, T. E.; Li, L. Q. Visible-light driven Si-Au micromotors in water and organic solvents. Nanoscale 2017, 9, 11434–11438.

    CAS  Google Scholar 

  40. Dreyfus, R.; Baudry, J.; Roper, M. L.; Fermigier, M.; Stone, H. A.; Bibette, J. Microscopic artificial swimmers. Nature 2005, 437, 862–865.

    CAS  Google Scholar 

  41. Shin, S. R.; Migliori, B.; Miccoli, B.; Li, Y. C.; Mostafalu, P.; Seo, J.; Mandla, S.; Enrico, A.; Antona, S.; Sabarish, R. et al. Electrically driven microengineered bioinspired soft robots. Adv. Mater. 2018, 40, 1704189.

    Google Scholar 

  42. Yan, M.; Liu, T. Y.; Li, X. F.; Zhou, S.; Zeng, H.; Liang, Q. R.; Liang, K.; Wei, X. B.; Wang, J. Q.; Gu, Z. et al. Soft patch interface-oriented superassembly of complex hollow nanoarchitectures for smart dual-responsive nanospacecrafts. J. Am. Chem. Soc. 2022, 144, 7778–7789.

    CAS  Google Scholar 

  43. Li, J.; Liu, X. M.; Tan, L.; Cui, Z. D.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L.; Zheng, Y. F.; Yeung, K. W. K. et al. Zinc-doped Prussian blue enhances photothermal clearance of Staphylococcus aureus and promotes tissue repair in infected wounds. Nat. Commun. 2019, 10, 4490.

    Google Scholar 

  44. Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316–317.

    CAS  Google Scholar 

  45. Liu, T. Y.; Xie, L.; Zeng, J.; Yan, M.; Qiu, B. L.; Wang, X. Y.; Zhou, S.; Zhang, X.; Zeng, H.; Liang, Q. R. et al. Interfacial superassembly of light-responsive mechanism-switchable nanomotors with tunable mobility and directionality. ACS Appl. Mater. Interfaces 2022, 14, 15517–15528.

    CAS  Google Scholar 

  46. Tian, Y.; Younis, M. R.; Tang, Y. X.; Liao, X.; He, G.; Wang, S. J.; Teng, Z. G.; Huang, P.; Zhang, L. J.; Lu, G. M. Dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death. J. Nanobiotechnol. 2021, 19, 365.

    CAS  Google Scholar 

  47. He, Y. C.; Cong, C.; Li, X. L.; Zhu, R. Y.; Li, A. S.; Zhao, S. X.; Li, X. W.; Cheng, X.; Yang, M. X.; Gao, D. W. Nano-drug system based on hierarchical drug release for deep localized/systematic cascade tumor therapy stimulating antitumor immune responses. Theranostics 2019, 9, 2897–2909.

    CAS  Google Scholar 

  48. Guan, B. Y.; Yu, L.; Lou, X. W. Formation of asymmetric bowl-like mesoporous particles via emulsion-induced interface anisotropic assembly. J. Am. Chem. Soc. 2016, 138, 11306–11311.

    CAS  Google Scholar 

  49. Gao, C. B.; Zheng, H. Q.; Xing, L.; Shu, M. H.; Che, S. N. Designable coordination bonding in mesopores as a pH-responsive release system. Chem. Mater. 2010, 22, 5437–5444.

    CAS  Google Scholar 

  50. Kim, C. W.; Lee, H. M.; Lee, T. H.; Kang, C.; Kleinman, H. K.; Gho, Y. S. Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin. Cancer Res. 2002, 62, 6312–6317.

    CAS  Google Scholar 

  51. Lee, S. J.; Sohn, Y. D.; Andukuri, A.; Kim, S.; Byun, J.; Han, J. W.; Park, I. H.; Jun, H. W.; Yoon, Y. S. Enhanced therapeutic and long-term dynamic vascularization effects of human pluripotent stem cell-derived endothelial cells encapsulated in a nanomatrix Gel. Circulation 2017, 136, 1939–1954.

    CAS  Google Scholar 

  52. Wang, Z.; Xie, Y. J.; Li, Y. W.; Huang, Y. R.; Parent, L. R.; Ditri, T.; Zang, N. Z.; Rinehart, J. D.; Gianneschi, N. C. Tunable, metal-loaded polydopamine nanoparticles analyzed by magnetometry. Chem. Mater. 2017, 29, 8195–8201.

    CAS  Google Scholar 

  53. Xuan, M. J.; Wu, Z. G.; Shao, J. X.; Dai, L. R.; Si, T. Y.; He, Q. Near infrared light-powered Janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 2016, 138, 6492–6497.

    CAS  Google Scholar 

  54. Dunderdale, G.; Ebbens, S.; Fairclough, P.; Howse, J. Importance of particle tracking and calculating the mean-squared displacement in distinguishing nanopropulsion from other processes. Langmuir 2012, 28, 10997–11006.

    CAS  Google Scholar 

  55. Patiño, T.; Arqué, X.; Mestre, R.; Palacios, L.; Sánchez, S. Fundamental aspects of enzyme-powered micro- and nanoswimmers. Acc. Chem. Res. 2018, 51, 2662–2671.

    Google Scholar 

  56. Patiño, T.; Feiner-Gracia, N.; Arqué, X.; Miguel-López, A.; Jannasch, A.; Stumpp, T.; Schäffer, E.; Albertazzi, L.; Sánchez, S. Influence of enzyme quantity and distribution on the self-propulsion of non-Janus urease-powered micromotors. J. Am. Chem. Soc. 2018, 140, 7896–7903.

    Google Scholar 

  57. Li, T. C.; Kheifets, S.; Medellin, D.; Raizen, M. G. Measurement of the instantaneous velocity of a Brownian particle. Science 2010, 328, 1673–1675.

    CAS  Google Scholar 

  58. Bao, H. M.; Lv, F.; Liu, T. J. A pro-angiogenic degradable Mg-poly(lactic-co-glycolic acid) implant combined with rhbFGF in a rat limb ischemia model. Acta Biomater. 2017, 64, 279–289.

    CAS  Google Scholar 

  59. Jiao, X. Y.; Wang, Z. M.; Xiu, J.; Dai, W. H.; Zhao, L.; Xu, T. L.; Du, X.; Wen, Y. Q.; Zhang, X. J. NIR powered Janus nanocarrier for deep tumor penetration. Appl. Mater. Today 2020, 18, 100504.

    Google Scholar 

  60. Xing, Y.; Zhou, M. Y.; Du, X.; Li, X. Y.; Li, J. Q.; Xu, T. L.; Zhang, X. J. Hollow mesoporous carbon@Pt Janus nanomotors with dual response of H2O2 and near-infrared light for active cargo delivery. Appl. Mater. Today 2019, 13, 85–91.

    Google Scholar 

  61. Ding, Y. H.; Yang, Z. L.; Bi, C. W. C.; Yang, M.; Zhang, J. C.; Xu, S. L.; Lu, X.; Huang, N.; Huang, P. B.; Leng, Y. Modulation of protein adsorption, vascular cell selectivity and platelet adhesion by mussel-inspired surface functionalization. J. Mater. Chem. B 2014, 2, 3819–3829.

    CAS  Google Scholar 

  62. Yang, Z.; Huang, R.; Zheng, B.; Guo, W.; Li, C.; He, W.; Wei, Y.; Du, Y.; Wang, H.; Wu, D. et al. Highly Stretchable, Adhesive, Biocompatible, and Antibacterial Hydrogel Dressings for Wound Healing. Adv. Sci. 2021, 8, 2003627.

    CAS  Google Scholar 

  63. Lee, B. P.; Messersmith, P. B.; Israelachvili, J. N.; Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 2011, 41, 99–132.

    CAS  Google Scholar 

  64. Ismaeel, A.; Franco, M. E.; Lavado, R.; Papoutsi, E.; Casale, G. P.; Fuglestad, M.; Mietus, C. J.; Haynatzki, G. R.; Smith, R. S.; Bohannon, W. T. et al. Altered metabolomic profile in patients with peripheral artery disease. J. Clin. Med. 2019, 8, 1463.

    CAS  Google Scholar 

  65. Dash, B. C.; Thomas, D.; Monaghan, M.; Carroll, O.; Chen, X. Z.; Woodhouse, K.; O’Brien, T.; Pandit, A. An injectable elastin-based gene delivery platform for dose-dependent modulation of angiogenesis and inflammation for critical limb ischemia. Biomaterials 2015, 65, 126–139.

    CAS  Google Scholar 

  66. Gui, L.; Chen, Y. L.; Diao, Y. P.; Chen, Z. G.; Duan, J. W.; Liang, X. Y.; Li, H. Y.; Liu, K. J.; Miao, Y. Q.; Gao, Q. et al. ROS-responsive nanoparticle-mediated delivery of CYP2J2 gene for therapeutic angiogenesis in severe hindlimb ischemia. Mater. Today Bio 2022, 14, 100192.

    Google Scholar 

  67. Chen, Z. G.; Duan, J. W.; Diao, Y. P.; Chen, Y. L.; Liang, X. Y.; Li, H. Y.; Miao, Y. Q.; Gao, Q.; Gui, L.; Wang, X. L. et al. ROS-responsive capsules engineered from EGCG-zinc networks improve therapeutic angiogenesis in mouse limb ischemia. Bioact. Mater. 2021, 6, 1–11.

    Google Scholar 

  68. Bai, B. B.; Gu, C. Y.; Lu, X. H.; Ge, X. Y.; Yang, J. L.; Wang, C. F.; Gu, Y. C.; Deng, A. D.; Guo, Y. H.; Feng, X. M. et al. Polydopamine functionalized mesoporous silica as ROS-sensitive drug delivery vehicles for periodontitis treatment by modulating macrophage polarization. Nano Res. 2021, 14, 4577–4583.

    CAS  Google Scholar 

  69. Duan, J. W.; Chen, Z. G.; Liang, X. Y.; Chen, Y. L.; Li, H. Y.; Tian, X. X.; Zhang, M. M.; Wang, X. L.; Sun, H. F.; Kong, D. L. et al. Construction and application of therapeutic metal-polyphenol capsule for peripheral artery disease. Biomaterials 2020, 255, 120199.

    CAS  Google Scholar 

  70. Yao, J.; Cheng, Y.; Zhou, M.; Zhao, S.; Lin, S. C.; Wang, X. Y.; Wu, J. J. X.; Li, S. R.; Wei, H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 2018, 9, 2927–2933.

    CAS  Google Scholar 

  71. Bao, X. F.; Zhao, J. H.; Sun, J.; Hu, M.; Yang, X. R. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano 2018, 12, 8882–8892.

    CAS  Google Scholar 

  72. Zhao, H.; Zeng, Z. D.; Liu, L.; Chen, J. W.; Zhou, H. T.; Huang, L. L.; Huang, J.; Xu, H.; Xu, Y. Y.; Chen, Z. R. et al. Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. Nanoscale 2018, 10, 6981–6991.

    CAS  Google Scholar 

  73. Yin, K. J.; Olsen, K.; Hamblin, M.; Zhang, J. F.; Schwendeman, S. P.; Chen, Y. E. Vascular endothelial cell-specific microRNA-15a inhibits angiogenesis in hindlimb ischemia. J. Biol. Chem. 2012, 287, 27055–27064.

    CAS  Google Scholar 

  74. Kang, S. W.; Lim, H. W.; Seo, S. W.; Jeon, O.; Lee, M.; Kim, B. S. Nanosphere-mediated delivery of vascular endothelial growth factor gene for therapeutic angiogenesis in mouse ischemic limbs. Biomaterials 2008, 29, 1109–1117.

    CAS  Google Scholar 

  75. Cho, B. R.; Ryu, D. R.; Lee, K. S.; Lee, D. K.; Bae, S.; Kang, D. G.; Ke, Q. G.; Singh, S. S.; Ha, K. S.; Kwon, Y. G. et al. p-Hydroxybenzyl alcohol-containing biodegradable nanoparticle improves functional blood flow through angiogenesis in a mouse model of hindlimb ischemia. Biomaterials 2015, 53, 679–687.

    CAS  Google Scholar 

  76. Veikkola, T.; Alitalo, K. VEGFs, receptors and angiogenesis. Semin. Cancer Biol. 1999, 9, 211–220.

    CAS  Google Scholar 

  77. Yang, F.; Cho, S. W.; Son, S. M.; Bogatyrev, S. R.; Singh, D.; Green, J. J.; Mei, Y.; Park, S.; Bhang, S. H.; Kim, B. S. et al. Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc. Natl. Acad. Sci. USA 2010, 107, 3317–3322.

    CAS  Google Scholar 

  78. Kim, J.; Cao, L.; Shvartsman, D.; Silva, E. A.; Mooney, D. J. Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis. Nano Lett. 2011, 11, 694–700.

    CAS  Google Scholar 

  79. Weiss, D. J.; Casale, G. P.; Koutakis, P.; Nella, A. A.; Swanson, S. A.; Zhu, Z.; Miserlis, D.; Johanning, J. M.; Pipinos, I. I. Oxidative damage and myofiber degeneration in the gastrocnemius of patients with peripheral arterial disease. J. Transl. Med. 2013, 11, 230.

    Google Scholar 

  80. Barralet, J.; Gbureck, U.; Habibovic, P.; Vorndran, E.; Gerard, C.; Doillon, C. J. Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release. Tissue Eng. Part A 2009, 15, 1601–1609.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 82170515), Open Research Fund of Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy (No. XZSYSKF2021038), Jiangsu Funding Program for Excellent Postdoctoral Talent, and Changzhou Municipal Health Commission Science and Technology Project (No. ZD202126).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiwei Zhang, Qiang Xu or Xin Du.

Electronic Supplementary Material

12274_2022_5356_MOESM1_ESM.pdf

Near-infrared light-driven multifunctional metal ion (Cu2+)-loaded polydopamine nanomotors for therapeutic angiogenesis in critical limb ischemia

Supplementary material, approximately 248 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, L., Huang, J., Xing, Y. et al. Near-infrared light-driven multifunctional metal ion (Cu2+)-loaded polydopamine nanomotors for therapeutic angiogenesis in critical limb ischemia. Nano Res. 16, 5108–5120 (2023). https://doi.org/10.1007/s12274-022-5356-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5356-2

Keywords

Navigation