Skip to main content
Log in

CO2-promoted transfer-free growth of conformal graphene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Gaseous promotors have readily been adopted during the direct synthesis of graphene over insulators to enhance the growth quality and/or boost the growth rate. The understanding of the real functions of carbon-containing promotors has still remained elusive. In this study, we identify the critical roles of a representative CO2 promotor played in the direct growth of graphene. The comparative experimental trials validate CO2 as an effective modulator to decrease graphene nucleation density, improve growth kinetics, and mitigate adlayer formation. The first-principles calculations illustrate that the generation of gas-phase OH species in CO2-assisted system helps decrease the energy barriers of CH4 decomposition and carbon attachment to the growth front, which might be the key factor to allow high-quality direct growth. Such a CO2-promoted strategy enables the conformal coating of graphene film over curved insulators, where the sheet resistance of grown graphene on quartz reaches as low as 1.26 kΩ·sq−1 at an optical transmittance of ∼ 95.8%. The fabricated endoscope lens based on our conformal graphene harvests an apoptosis of 82.8% for noninvasive thermal therapy. The work presented here is expected to motivate further investigations in the controllable growth of high-quality graphene on insulating substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    CAS  Google Scholar 

  2. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

    CAS  Google Scholar 

  3. Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2022, 490, 192–200.

    Google Scholar 

  4. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    CAS  Google Scholar 

  5. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    CAS  Google Scholar 

  6. Romagnoli, M.; Sorianello, V.; Midrio, M.; Koppens, F. H. L.; Huyghebaert, C.; Neumaier, D.; Galli, P.; Templ, W.; D’Errico, A.; Ferrari, A. C. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 2018, 3, 392–414.

    CAS  Google Scholar 

  7. Liang, X. L.; Sperling, B. A.; Calizo, I.; Cheng, G. J.; Hacker, C. A.; Zhang, Q.; Obeng, Y.; Yan, K.; Peng, H. L.; Li, Q. L. et al. Toward clean and crackless transfer of graphene. ACS Nano 2011, 5, 9144–9153.

    Google Scholar 

  8. Lupina, G.; Kitzmann, J.; Costina, I.; Lukosius, M.; Wenger, C.; Wolff, A.; Vaziri, S.; Östling, M.; Pasternak, I.; Krajewska, A. et al. Residual metallic contamination of transferred chemical vapor deposited graphene. ACS Nano 2015, 9, 4776–4785.

    CAS  Google Scholar 

  9. Bruna, M.; Ott, A. K.; Ijäs, M.; Yoon, D.; Sassi, U.; Ferrari, A. C. Doping dependence of the Raman spectrum of defected graphene. ACS Nano 2014, 8, 7432–7441.

    CAS  Google Scholar 

  10. Chen, Y.; Gong, X. L.; Gai, J. G. Progress and challenges in transfer of large-area graphene films. Adv. Sci. 2016, 3, 1500343.

    Google Scholar 

  11. Pang, J. B.; Mendes, R. G.; Wrobel, P. S.; Wlodarski, M. D.; Ta, H. Q.; Zhao, L.; Giebeler, L.; Trzebicka, B.; Gemming, T.; Fu, L. et al. Self-terminating confinement approach for large-area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition. ACS Nano 2017, 11, 1946–1956.

    CAS  Google Scholar 

  12. Chen, J. Y.; Wen, Y. G.; Guo, Y. L.; Wu, B.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wang, D.; Yu, G.; Liu, Y. Q. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 2011, 133, 17548–17551.

    CAS  Google Scholar 

  13. Chen, Z. L.; Liu, Z. Q.; Wei, T. B.; Yang, S. Y.; Dou, Z. P.; Wang, Y. Y.; Ci, H.; Chang, H. L.; Qi, Y.; Yan, J. C. et al. Improved epitaxy of AlN film for deep-ultraviolet light-emitting diodes enabled by graphene. Adv. Mater. 2019, 31, 1807345.

    Google Scholar 

  14. Yang, W.; Chen, G. R.; Shi, Z. W.; Liu, C. C.; Zhang, L. C.; Xie, G. B.; Cheng, M.; Wang, D. M.; Yang, R.; Shi, D. X. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792–797.

    CAS  Google Scholar 

  15. Sun, J. Y.; Gao, T.; Song, X. J.; Zhao, Y. F.; Lin, Y. W.; Wang, H. C.; Ma, D. L.; Chen, Y. B.; Xiang, W. F.; Wang, J. et al. Direct growth of high-quality graphene on High-K dielectric SrTiO3 substrates. J. Am. Chem. Soc. 2014, 136, 6574–6577.

    CAS  Google Scholar 

  16. Chen, J. Y.; Guo, Y. L.; Wen, Y. G.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wu, B.; Luo, B. R.; Yu, G.; Liu, Y. Q. Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates. Adv. Mater. 2013, 25, 992–997.

    CAS  Google Scholar 

  17. Köhler, C.; Hajnal, Z.; Deák, P.; Frauenheim, T.; Suhai, S. Theoretical investigation of carbon defects and diffusion in α-quartz. Phys. Rev. B 2001, 64, 085333.

    Google Scholar 

  18. Yan, Z.; Peng, Z. W.; Sun, Z. Z.; Yao, J.; Zhu, Y.; Liu, Z.; Ajayan, P. M.; Tour, J. M. Growth of bilayer graphene on insulating substrates. ACS Nano 2011, 5, 8187–8192.

    CAS  Google Scholar 

  19. Su, C. Y.; Lu, A. Y.; Wu, C. Y.; Li, Y. T.; Liu, K. K.; Zhang, W. J.; Lin, S. Y.; Juang, Z. Y.; Zhong, Y. L.; Chen, F. R. et al. Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett. 2011, 11, 3612–3616.

    CAS  Google Scholar 

  20. Teng, P. Y.; Lu, C. C.; Akiyama-Hasegawa, K.; Lin, Y. C.; Yeh, C. H.; Suenaga, K.; Chiu, P. W. Remote catalyzation for direct formation of graphene layers on oxides. Nano Lett. 2012, 12, 1379–1384.

    CAS  Google Scholar 

  21. Tan, L. F.; Zeng, M. Q.; Wu, Q.; Chen, L. F.; Wang, J.; Zhang, T.; Eckert, J.; Rümmeli, M. H.; Fu, L. Direct growth of ultrafast transparent single-layer graphene defoggers. Small 2015, 11, 1840–1846.

    CAS  Google Scholar 

  22. Shan, J. Y.; Fang, S. M.; Wang, W. D.; Zhao, W.; Zhang, R.; Liu, B. Z.; Lin, L.; Jiang, B.; Ci, H.; Liu, R. J. et al. Copper acetate-facilitated transfer-free growth of high-quality graphene for hydrovoltaic generators. Natl. Sci. Rev. 2022, 9, nwab169.

    CAS  Google Scholar 

  23. Weber, N. E.; Binder, A.; Kettner, M.; Hirth, S.; Weitz, R. T.; Tomović, Ž Metal-free synthesis of nanocrystalline graphene on insulating substrates by carbon dioxide-assisted chemical vapor deposition. Carbon 2017, 112, 201–207.

    CAS  Google Scholar 

  24. Wang, H. P.; Xue, X. D.; Jiang, Q. Q.; Wang, Y. L.; Geng, D. C.; Cai, L.; Wang, L. P.; Xu, Z. P.; Yu, G. Primary nucleation-dominated chemical vapor deposition growth for uniform graphene monolayers on dielectric substrate. J. Am. Chem. Soc. 2019, 141, 11004–11008.

    CAS  Google Scholar 

  25. Wei, S. J.; Ma, L. P.; Chen, M. L.; Liu, Z. B.; Ma, W.; Sun, D. M.; Cheng, H. M.; Ren, W. C. Water-assisted rapid growth of monolayer graphene films on SiO2/Si substrates. Carbon 2019, 148, 241–248.

    CAS  Google Scholar 

  26. Xie, H. H.; Cui, K. J.; Cui, L. Z.; Liu, B. Z.; Yu, Y.; Tan, C. W.; Zhang, Y. Y.; Zhang, Y. F.; Liu, Z. F. H2O-etchant-promoted synthesis of high-quality graphene on glass and its application in see-through thermochromic displays. Small 2020, 16, 1905485.

    CAS  Google Scholar 

  27. Liu, B. Z.; Wang, H. H.; Gu, W.; Zhou, L.; Chen, Z. L.; Nie, Y. F.; Tan, C. W.; Ci, H. A.; Wei, N.; Cui, L. Z. et al. Oxygen-assisted direct growth of large-domain and high-quality graphene on glass targeting advanced optical filter applications. Nano Res. 2021, 14, 260–267.

    CAS  Google Scholar 

  28. Liu, R. J.; Liu, B. Z.; Sun, J. Y.; Liu, Z. F. Gaseous-promotor-assisted direct growth of graphene on insulating substrates: Progress and prospects. Acta Phys. Chim. Sin. 2023, 39, 2111011.

    Google Scholar 

  29. Sato, T.; Sugime, H.; Noda, S. CO2-assisted growth of millimeter-tall single-wall carbon nanotube arrays and its advantage against H2O for large-scale and uniform synthesis. Carbon 2018, 136, 143–149.

    CAS  Google Scholar 

  30. Liao, Y. P.; Hussain, A.; Laiho, P.; Zhang, Q.; Tian, Y.; Wei, N.; Ding, E. X.; Khan, S. A.; Nguyen, N. N.; Ahmad, S. et al. Tuning geometry of SWCNTs by CO2 in floating catalyst CVD for high-performance transparent conductive films. Adv. Mater. Interfaces 2018, 5, 1801209.

    Google Scholar 

  31. Wang, Z. Q.; Zhao, Q. C.; Tong, L. M.; Zhang, J. Investigation of etching behavior of single-walled carbon nanotubes using different etchants. J. Phys. Chem. C 2017, 121, 27655–27663.

    CAS  Google Scholar 

  32. Fanton, M. A.; Robinson, J. A.; Puls, C.; Liu, Y.; Hollander, M. J.; Weiland, B. E.; LaBella, M.; Trumbull, K.; Kasarda, R.; Howsare, C. et al. Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition. ACS Nano 2011, 5, 8062–8069.

    CAS  Google Scholar 

  33. Xing, S. R.; Wu, W.; Wang, Y. N.; Bao, J. M.; Pei, S. S. Kinetic study of graphene growth: Temperature perspective on growth rate and film thickness by chemical vapor deposition. Chem. Phys. Lett. 2013, 580, 62–66.

    CAS  Google Scholar 

  34. Mérel, P.; Tabbal, M.; Chaker, M.; Moisa, S.; Margot, J. Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Appl. Surf. Sci. 1998, 136, 105–110.

    Google Scholar 

  35. Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.

    CAS  Google Scholar 

  36. Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

    CAS  Google Scholar 

  37. Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    CAS  Google Scholar 

  38. Ma, T.; Liu, Z. B.; Wen, J. X.; Gao, Y.; Ren, X. B.; Chen, H. J.; Jin, C. H.; Ma, X. L.; Xu, N. S.; Cheng, H. M. et al. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Nat. Commun. 2017, 8, 14486.

    CAS  Google Scholar 

  39. Cui, L. Z.; Chen, X. D.; Liu, B. Z.; Chen, K.; Chen, Z. L.; Qi, Y.; Xie, H. H.; Zhou, F.; Rümmeli, M. H.; Zhang, Y. F. et al. Highly conductive nitrogen-doped graphene grown on glass toward electrochromic applications. ACS Appl. Mater. Interfaces 2018, 10, 32622–32630.

    CAS  Google Scholar 

  40. Sun, J. Y.; Chen, Y. B.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z. Y.; Chen, Z. L.; Song, X. J.; Gao, Y. F.; Rümmeli, M. H. et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 2015, 15, 5846–5854.

    CAS  Google Scholar 

  41. Kim, H.; Song, I.; Park, C.; Son, M.; Hong, M. S.; Kim, Y.; Kim, J. S.; Shin, H. J.; Baik, J.; Choi, H. C. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 2013, 7, 6575–6582.

    CAS  Google Scholar 

  42. Nasibulin, A. G.; Moisala, A.; Brown, D. P.; Kauppinen, E. I. Carbon nanotubes and onions from carbon monoxide using Ni(acac)2 and Cu(acac)2 as catalyst precursors. Carbon 2003, 41, 2711–2724.

    CAS  Google Scholar 

  43. Cheng, T.; Liu, Z. R.; Liu, Z. F.; Ding, F. The mechanism of graphene vapor-solid growth on insulating substrates. ACS Nano 2021, 15, 7399–7408.

    CAS  Google Scholar 

  44. Choi, J.; Kim, H. J.; Wang, M. C.; Leem, J.; King, W. P.; Nam, S. Three-dimensional integration of graphene via swelling, shrinking, and adaptation. Nano Lett. 2015, 15, 4525–4531.

    CAS  Google Scholar 

  45. Vilkov, O. Y.; Tarasov, A. V.; Bokai, K. A.; Makarova, A. A.; Muntwiler, M.; Schiller, F.; Ortega, J. E.; Yashina, L. V.; Vyalikh, D. V.; Usachov, D. Y. Nitrogen-doped graphene on a curved nickel surface. Carbon 2021, 183, 711–720.

    CAS  Google Scholar 

  46. Vatansever, F.; Hamblin, M. R. Far infrared radiation (FIR): Its biological effects and medical applications. Photon. Lasers Med. 2012, 1, 255–266.

    Google Scholar 

  47. Yu, T. T.; Hu, Y. M.; Feng, G. P.; Hu, K. A graphene-based flexible device as a specific far-infrared emitter for noninvasive tumor therapy. Adv. Therap. 2020, 3, 1900195.

    Google Scholar 

  48. Zhu, Y.; Wu, J. H.; Chen, M.; Liu, X. L.; Xiong, Y. J.; Wang, Y. Y.; Feng, T.; Kang, S.; Wang, X. F. Recent advances in the biotoxicity of metal oxide nanoparticles: Impacts on plants, animals and microorganisms. Chemosphere 2019, 237, 124403.

    CAS  Google Scholar 

  49. Fang, B.; Bodepudi, S. C.; Tian, F.; Liu, X. Y.; Chang, D.; Du, S. C.; Lv, J. H.; Zhong, J.; Zhu, H. M.; Hu, H. et al. Bidirectional mid-infrared communications between two identical macroscopic graphene fibres. Nat. Commun. 2020, 11, 6368.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2019YFA0708201 and 2019YFA0708204), the National Natural Science Foundation of China (Nos. T2188101, 61527814, and 22179089), the Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXTD-202001), the Beijing Municipal Science and Technology Planning Project (No. Z191100000819004), the Science Fund for Distinguished Young Scholars of Jiangsu Province (No. BK20211503), and the Suzhou Science and Technology Project-Prospective Application Research Program (No. SYG202038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanjian Yin, Jingyu Sun or Zhongfan Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Peng, Z., Sun, X. et al. CO2-promoted transfer-free growth of conformal graphene. Nano Res. 16, 6334–6342 (2023). https://doi.org/10.1007/s12274-022-5299-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5299-x

Keywords

Navigation