Skip to main content
Log in

Influence of the operating temperature on the ageing and interfaces of double layer polymer electrolyte solid state Li metal batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Solid-state lithium metal batteries (SSLMBs) are considered an auspicious technology to develop high energy density and safe energy storage devices. The double layer polymer electrolyte (DLPE) is a rational approach for engineering high-performance SSLMBs addressing electrolyte requirements with specifically designed polymers at the positive electrode and as separator. In this work, SSLMBs were assembled with poly(propylene carbonate) (PPC), offering stability toward oxidation at the positive electrode, and a gel polymer electrolyte with polyethyleneglycol dimethylether (PEGDME) as separator, offering high ionic conductivity at low temperature and sufficient interfacial stability with Li metal. The electrochemical properties and performance of cells with LiFePO4 and Li[Ni0.6Mn0.2Co0.2]O2 positive electrodes are thoroughly investigated as function of the operating temperature by using a host of characterization techniques. High-voltage cells with an areal capacity of 0.7 mAh·cm−2 cycled at 40 °C exhibit a higher capacity retention than the cells cycled at 70 °C. To understand such differences, a three-electrode setup is applied to discriminate anodic processes from cathodic as function of the temperature. We elucidate the ageing and interfacial evolution for DLPE cells with gel polymer electrolytes paving the way for building performance solid state batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  CAS  Google Scholar 

  2. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  Google Scholar 

  3. The Future of Lithium-Ion Batteries: Demand, Technologies and Investments [Online]. Wood Mackenzie: 2018. https://www.woodmac.com/reports/power-markets-the-future-of-lithium-ion-batteries-demand-technologies-and-investments-29646 (accessed Dec 2, 2021).

  4. Balakrishnan, P. G.; Ramesh, R.; Kumar, T. P. Safety mechanisms in lithium-ion batteries. J. Power Sources 2006, 155, 401–414.

    Article  CAS  Google Scholar 

  5. Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.

    Article  Google Scholar 

  6. Judez, X.; Eshetu, G. G.; Li, C. M.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M. Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes. Joule 2018, 2, 2208–2224.

    Article  CAS  Google Scholar 

  7. Armand, M.; Duclot, M. Ionically and pref. electronically conductive electrode—Comprising agglomerate of active electrode material and solid soln. of ionic cpd. in polymer pref. polyoxyalkylene. FR2442514A1, June 20, 1980.

  8. BlueSolutions Technology: LMP Batteries [Online]. https://www.blue-solutions.com/en/battery-technology/ (accessed Jan 10, 2020).

  9. Randau, S.; Weber, D. A.; Kötz, O.; Koerver, R.; Braun, P.; Weber, A.; Ivers-Tiffée, E.; Adermann, T.; Kulisch, J.; Zeier, W. G. et al. Benchmarking the performance of all-solid-state lithium batteries. N at. Energy 2020, 5, 259–270.

    Article  CAS  Google Scholar 

  10. Armand, M. B. Polymer electrolytes. Ann. Rev. Mater. Sci. 1986, 16, 245–261.

    Article  CAS  Google Scholar 

  11. Golodnitsky, D.; Strauss, E.; Peled, E.; Greenbaum, S. Review-On order and disorder in polymer electrolytes. J. Electrochem. So c. 2015, 162, A2551–A2566.

  12. Aldalur, I.; Martinez-Ibañez, M.; Piszcz, M.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M. Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes. J. Power Sourc es 2018, 383, 144–149.

    Article  CAS  Google Scholar 

  13. Tang, S.; Guo, W.; Fu, Y. Z. Advances in composite polymer electrolytes for lithium batteries and beyond. Adv. Energy Mate r. 2021, 11, 2000802.

    Article  CAS  Google Scholar 

  14. Sakakibara, T.; Kitamura, M.; Honma, T.; Kohno, H.; Uno, T.; Kubo, M.; Imanishi, N.; Takeda, Y.; Itoh, T. Cross-linked polymer electrolyte and its application to lithium polymer battery. Electrochim. Acta 2019, 296, 1018–1026.

    Article  CAS  Google Scholar 

  15. Lu, Q. W.; He, Y. B.; Yu, Q. P.; Li, B. H.; Kaneti, Y. V.; Yao, Y. W.; Kang, F. Y.; Yang, Q. H. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater. 2017, 29, 1604460.

    Article  Google Scholar 

  16. He, R. X.; Echeverri, M.; Ward, D.; Zhu, Y.; Kyu, T. Highly conductive solvent-free polymer electrolyte membrane for lithium-ion batteries: Effect of prepolymer molecular weight. J. Membr. Sci. 2016, 498, 208–217.

    Article  CAS  Google Scholar 

  17. Suk, J.; Lee, Y. H.; Kim, D. Y.; Kim, D. W.; Cho, S. Y.; Kim, J. M.; Kang, Y. K. Semi-interpenetrating solid polymer electrolyte based on thiol-ene cross-linker for all-solid-state lithium batteries. J. Power Sources 2016, 334, 154–161.

    Article  CAS  Google Scholar 

  18. Washiro, S.; Yoshizawa, M.; Nakajima, H.; Ohno, H. Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids. Polymer 2004, 45, 1577–1582.

    Article  CAS  Google Scholar 

  19. Huang, L. Y.; Shih, Y. C.; Wang, S. H.; Kuo, P. L.; Teng, H. Gel electrolytes based on an ether-abundant polymeric framework for high-rate and long-cycle-life lithium ion batteries. J. Mater. Chem. A 2014, 2, 10492–10501.

    Article  CAS  Google Scholar 

  20. Shi, J.; Yang, Y. F.; Shao, H. X. Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries. J. Membr. Sci. 2018, 547, 1–10.

    Article  CAS  Google Scholar 

  21. Zaghib, K.; Charest, P.; Guerfi, A.; Shim, J.; Perrier, M.; Striebel, K. Safe Li-ion polymer batteries for HEV applications. J. Powe r Sources 2004, 134, 124–129.

    Article  CAS  Google Scholar 

  22. Kim, J. R.; Choi, S. W.; Jo, S. M.; Lee, W. S.; Kim, B. C. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries. Electrochim. Acta 2004, 50, 69–75.

    Article  CAS  Google Scholar 

  23. Hou, X. P.; Siow, K. S. Ionic conductivity and electrochemical characterization of novel interpenetrating polymer network electrolytes. Solid State Ionics 2002, 147, 391–395.

    Article  CAS  Google Scholar 

  24. Jiang, Z.; Carroll, B.; Abraham, K. M. Studies of some poly(vinylidene fluoride) electrolytes. Electrochim. Acta 1997, 42, 2667–2677.

    Article  CAS  Google Scholar 

  25. Porcarelli, L.; Gerbaldi, C.; Bella, F.; Nair, J. R. Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries. Sci. Rep. 2016, 6, 19892.

    Article  CAS  Google Scholar 

  26. Abraham, K. M.; Jiang, Z.; Carroll, B. Highly conductive PEO-like polymer electrolytes. Chem. Mater. 1997, 9, 1978–1988.

    Article  CAS  Google Scholar 

  27. Sheftel, V. O. Indirect Food Additives and Polymers: Migration and Toxicology; CRC Press: Boca Raton, 2000; pp 1320.

    Book  Google Scholar 

  28. Aurbach, D.; Granot, E. The study of electrolyte solutions based on solvents from the “glyme” family (linear polyethers) for secondary Li battery systems. Electrochim. Acta 1997, 42, 697–718.

    Article  CAS  Google Scholar 

  29. Lee, D. J.; Hassoun, J.; Panero, S.; Sun, Y. K.; Scrosati, B. A tetraethylene glycol dimethylether-lithium bis(oxalate)borate (TEGDME-LiBOB) electrolyte for advanced lithium ion batteries. Electrochem. Commun. 2012, 14, 43–46.

    Article  CAS  Google Scholar 

  30. Elia, G. A.; Bernhard, R.; Hassoun, J. A lithium-ion oxygen battery using a polyethylene glyme electrolyte mixed with an ionic liquid. RSC Adv. 2015, 5, 21360–21365.

    Article  CAS  Google Scholar 

  31. Yang, X. F.; Jiang, M.; Gao, X. J.; Bao, D. N.; Sun, Q.; Holmes, N.; Holmes, H.; Mukherjee, S.; Adair, K.; Zhao, C. T. et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: Main chain or terminal-OH group? Energy Environ. Sci. 2020, 13, 1318–1325.

    Article  CAS  Google Scholar 

  32. Nie, K. H.; Wang, X. L.; Qiu, J. L.; Wang, Y.; Yang, Q.; Xu, J. J.; Yu, X. Q.; Li, H.; Huang, X. J.; Chen, L. Q. Increasing poly(ethylene oxide) stability to 4.5 V by surface coating of the cathode. ACS Energy Lett. 2020, 5, 826–832.

    Article  CAS  Google Scholar 

  33. López-Aranguren, P.; Judez, X.; Chakir, M.; Armand, M.; Buannic, L. High voltage solid state batteries: Targeting high energy density with polymer composite electrolytes. J. Electrochem. So c. 2020, 167, 020548.

    Article  Google Scholar 

  34. Arrese-Igor, M.; Martinez-Ibañez, M.; Del Amo, J. M. L.; Sanchez-Diez, E.; Shanmukaraj, D.; Dumont, E.; Armand, M.; Aguesse, F.; López-Aranguren, P. Enabling double layer polymer electrolyte batteries: Overcoming the Li-salt interdiffusion. Energy Storag e Mater. 2022, 45, 578–585.

    Article  Google Scholar 

  35. Arrese-Igor, M.; Martinez-Ibañez, M.; Pavlenko, E.; Forsyth, M.; Zhu, H. J.; Armand, M.; Aguesse, F.; López-Aranguren, P. Toward high-voltage solid-state Li-metal batteries with double-layer polymer electrolytes. ACS Energy Lett. 2022, 7, 1473–1480.

    Article  CAS  Google Scholar 

  36. Zhou, W. D.; Wang, Z. X.; Pu, Y.; Li, Y. T.; Xin, S.; Li, X. F.; Chen, J. F. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries. Adv. Mater. 2019, 31, 1805574.

    Article  Google Scholar 

  37. Chawla, N.; Bharti, N.; Singh, S. Recent advances in non-flammable electrolytes for safer lithium-ion batteries. Batteries 2019, 5, 19.

    Article  CAS  Google Scholar 

  38. Castillo, J.; Santiago, A.; Judez, X.; Garbayo, I.; Clemente, J. A. C.; Morant-Miñana, M. C.; Villaverde, A.; González-Marcos, J. A.; Zhang, H.; Armand, M. et al. Safe, flexible, and high-performing gelpolymer electrolyte for rechargeable lithium metal batteries. Chem. Mater. 2021, 33, 8812–8821.

    Article  CAS  Google Scholar 

  39. Cho, Y. G.; Hwang, C.; Cheong, D. S.; Kim, Y. S.; Song, H. K. Gel/solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems. Adv. Mater. 2019, 31, 1804909.

    Article  Google Scholar 

  40. Qiu, W. L.; Ma, X. H.; Yang, Q. H.; Fu, Y. B.; Zong, X. F. Novel preparation of nanocomposite polymer electrolyte and its application to lithium polymer batteries. J. Power Sources 2004, 138, 245–252.

    Article  CAS  Google Scholar 

  41. Meabe, L.; Goujon, N.; Li, C. M.; Armand, M.; Forsyth, M.; Mecerreyes, D. Single-ion conducting poly(ethylene oxide carbonate) as solid polymer electrolyte for lithium batteries. Batteries Supercaps 2020, 3, 68–75.

    Article  CAS  Google Scholar 

  42. Carbone, L.; Gobet, M.; Peng, J.; Devany, M.; Scrosati, B.; Greenbaum, S.; Hassoun, J. Polyethylene glycol dimethyl ether (PEGDME)-based electrolyte for lithium metal battery. J. Powe r Sources 2015, 299, 460–464.

    Article  CAS  Google Scholar 

  43. Wurster, V.; Engel, C.; Graebe, H.; Ferber, T.; Jaegermann, W.; Hausbrand, R. Characterization of the interfaces in LiFePO4/PEO-LiTFSI composite cathodes and to the adjacent layers. J. Electrochem. Soc. 2019, 166, A5410–A5420.

    Article  CAS  Google Scholar 

  44. Pei, A.; Zheng, G. Y.; Shi, F. F.; Li, Y. Z.; Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017, 17, 1132–1139.

    Article  CAS  Google Scholar 

  45. Thirumalraj, B.; Hagos, T. T.; Huang, C. J.; Teshager, M. A.; Cheng, J. H.; Su, W. N.; Hwang, B. J. Nucleation and growth mechanism of lithium metal electroplating. J. Am. Chem. Soc. 2019, 141, 18612–18623.

    Article  CAS  Google Scholar 

  46. Milchev, A.; Montenegro, M. I. A galvanostatic study of electrochemical nucleation. J. Electroanal. Che m. 1992, 333, 93–102.

    Article  CAS  Google Scholar 

  47. Golozar, M.; Paolella, A.; Demers, H.; Bessette, S.; Lagacé, M.; Bouchard, P.; Guerfi, A.; Gauvin, R.; Zaghib, K. In situ observation of solid electrolyte interphase evolution in a lithium metal battery. Commun. Chem 2019, 2, 131.

    Article  CAS  Google Scholar 

  48. Yu, W.; Xie, H. Q.; Li, Y.; Chen, L. F.; Wang, Q. Experimental investigation on the thermal transport properties of ethylene glycol based nanofluids containing low volume concentration diamond nanoparticles. Colloids Surf. A: Physicochem. Eng. Aspe ct s 2011, 380, 1–5.

    Article  CAS  Google Scholar 

  49. Van Renterghem, J.; Vervaet, C.; De Beer, T. Rheological characterization of molten polymer-drug dispersions as a predictive tool for pharmaceutical hot-melt extrusion processability. P harm. Res. 2017, 34, 2312–2321.

    CAS  Google Scholar 

  50. Eshetu, G. G.; Judez, X.; Li, C. M.; Martinez-Ibañez, M.; Gracia, I.; Bondarchuk, O.; Carrasco, J.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M. Ultrahigh performance all solid-state lithium sulfur batteries: Salt anion’s chemistry-induced anomalous synergistic effect. J. Am. Chem. Soc. 2018, 140, 9921–9933.

    Article  CAS  Google Scholar 

  51. Evans, J.; Vincent, C. A.; Bruce, P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28, 2324–2328.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. J. M. del A. and K. G. of CIC energiGUNE for their support in solid state NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mikel Arrese-Igor or Pedro López Aranguren.

Electronic Supplementary Material

12274_2022_5278_MOESM1_ESM.pdf

Influence of the operating temperature on the ageing and interfaces of double layer polymer electrolyte solid state Li metal batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arrese-Igor, M., Martinez-Ibañez, M., Orue, A. et al. Influence of the operating temperature on the ageing and interfaces of double layer polymer electrolyte solid state Li metal batteries. Nano Res. 16, 8377–8384 (2023). https://doi.org/10.1007/s12274-022-5278-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5278-2

Keywords

Navigation