Skip to main content
Log in

K-modified MnOδ catalysts with tunnel structure and layered structure: Facile preparation and catalytic performance for soot combustion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Air pollution from particulate matter produced by incomplete combustion of diesel fuel has become a serious environmental pollution problem, which can be addressed by catalytic combustion. In this work, a series of K-modified MnOδ catalysts with different microstructures were synthesized by the hydrothermal method, and the relationship between structure of the catalysts and their catalytic performance for soot combustion was studied by characterization techniques and density functional theory (DFT) calculations. Results showed that the prepared catalysts had good catalytic performance for soot combustion and could completely oxidize soot at temperatures below 400 °C. The cryptomelane-type K2−xMn8O16 (K-OMS-2) with tunnel structure had excellent NO oxidation capacity and abundance of Mn4+ ions (Mn4+/Mn3+ = 1.24) with good redox ability, and it demonstrated better soot combustion performance than layered birnessite-type K2Mn4O8 (K-OL-1). The T10, T50, and T90 temperatures of K-OMS-2 were 269, 314, and 346 °C, respectively. The K-OMS-2 catalyst also showed excellent stability after five catalytic cycles, with T10, T50, and T90 values holding in the ranges of 270 ± 2, 316 ± 2, and 348 ± 3 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wei, Y. C.; Zhang, P.; Xiong, J.; Yu, Q.; Wu, Q. Q.; Zhao, Z.; Liu, J. SO2-tolerant catalytic removal of soot particles over 3D ordered macroporous Al2O3-supported binary Pt−Co oxide catalysts. Environ. Sci. Technol. 2020, 54, 6947–6956.

    CAS  Google Scholar 

  2. Liu, S.; Wu, X. D.; Weng, D.; Li, M.; Ran, R. Roles of acid sites on Pt/H-ZSM5 catalyst in catalytic oxidation of diesel soot. ACS Catal. 2018, 5, 909–919.

    Google Scholar 

  3. Wei, Y. C.; Zhang, Y. L.; Zhang, P.; Xiong, J.; Mei, X. L.; Yu, Q.; Zhao, Z.; Liu, J. Boosting the removal of diesel soot particles by the optimal exposed crystal facet of CeO2 in Au/CeO2 catalysts. Environ. Sci. Technol. 2020, 54, 2002–2011.

    CAS  Google Scholar 

  4. Wagloehner, S.; Nitzer-Noski, M.; Kureti, S. Oxidation of soot on manganese oxide catalysts. Chem. Eng. J. 2015, 259, 492–504.

    CAS  Google Scholar 

  5. Peng, C.; Yu, D.; Wang, L. Y.; Yu, X. H.; Zhao, Z. Recent advances in the preparation and catalytic performance of Mn-based oxide catalysts with special morphologies for the removal of air pollutants. J. Mater. Chem. A 2021, 9, 12947–12980.

    CAS  Google Scholar 

  6. Gentner, D. R.; Jathar, S. H.; Gordon, T. D.; Bahreini, R.; Day, D. A.; El Haddad, I.; Hayes, P. L.; Pieber, S. M.; Platt, S. M.; de Gouw, J. et al. Review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emissions. Environ. Sci. Technol. 2017, 51, 1074–1093.

    CAS  Google Scholar 

  7. Dhal, G. C.; Mohan, D.; Prasad, R. Preparation and application of effective different catalysts for simultaneous control of diesel soot and NOx emissions: An overview. Catal. Sci. Technol. 2017, 7, 1803–1825.

    CAS  Google Scholar 

  8. Frank, B.; Schuster, M. E.; Schlögl, R.; Su, D. S. Emission of highly activated soot particulate-the other side of the coin with modern diesel engines. Angew. Chem., Int. Ed. 2013, 52, 2673–2677.

    CAS  Google Scholar 

  9. Wu, Q. Q.; Xiong, J.; Zhang, Y. L.; Mei, X. L.; Wei, Y. C.; Zhao, Z.; Liu, J.; Li, J. M. Interaction-induced self-assembly of Au@La2O3 core-shell nanoparticles on La2O2CO3 nanorods with enhanced catalytic activity and stability for soot oxidation. ACS Catal. 2019, 9, 3700–3715.

    CAS  Google Scholar 

  10. Xiong, J.; Mei, X. L.; Liu, J.; Wei, Y. C.; Zhao, Z.; Xie, Z. A.; Li, J. M. Efficiently multifunctional catalysts of 3D ordered meso-macroporous Ce0.3Zr0.7O2-supported PdAu@CeO2 core-shell nanoparticles for soot oxidation: Synergetic effect of Pd−Au−CeO2 ternary components. Appl. Catal. B Environ. 2019, 251, 247–260.

    CAS  Google Scholar 

  11. di Sarli, V.; di Benedetto, A. Modeling and simulation of soot combustion dynamics in a catalytic diesel particulate filter. Chem. Eng. Sci. 2015, 137, 69–78.

    CAS  Google Scholar 

  12. Fino, D.; Bensaid, S.; Piumetti, M.; Russo, N. A review on the catalytic combustion of soot in diesel particulate filters for automotive applications: From powder catalysts to structured reactors. Appl. Catal. A Gen. 2016, 509, 75–96.

    CAS  Google Scholar 

  13. Ren, W.; Ding, T.; Yang, Y. X.; Xing, L. L.; Cheng, Q. P.; Zhao, D. Y.; Zhang, Z. L.; Li, Q.; Zhang, J.; Zheng, L. R. et al. Identifying oxygen activation/oxidation sites for efficient soot combustion over silver catalysts interacted with nanoflower-like hydrotalcite-derived CoAlO metal oxides. ACS Catal. 2019, 9, 8772–8784.

    CAS  Google Scholar 

  14. Gryboś, J.; Fedyna, M.; Legutko, P.; Leszczyński, B.; Janas, J.; Wach, A.; Szlachetko, J.; Yu, X. H.; Kotarba, A.; Zhao, Z. et al. Mechanistic insights into oxygen dynamics in soot combustion over cryptomelane catalysts in tight and loose contact modes via 18O2/16O2 isotopic variable composition measurements-a hot ring model of the catalyst operation. ACS Catal. 2021, 11, 9530–9546.

    Google Scholar 

  15. Andana, T.; Piumetti, M.; Bensaid, S.; Veyre, L.; Thieuleux, C.; Russo, N.; Fino, D.; Quadrelli, E. A.; Pirone, R. Nanostructured equimolar ceria-praseodymia for NOx-assisted soot oxidation: Insight into Pr dominance over Pt nanoparticles and metal-support interaction. Appl. Catal. B Environ. 2018, 226, 147–161.

    CAS  Google Scholar 

  16. Zhang, M. S.; Jin, B. F.; Liu, Y.; Liu, W.; Weng, D.; Wu, X. D.; Liu, S. Ozone activated Ag/CeO2 catalysts for soot combustion: The surface and structural influences. Chem. Eng. J. 2019, 375, 121961.

    CAS  Google Scholar 

  17. Serve, A.; Boreave, A.; Cartoixa, B.; Pajot, K.; Vernoux, P. Synergy between Ag nanoparticles and yttria-stabilized zirconia for soot oxidation. Appl. Catal. B Environ. 2019, 242, 140–149.

    CAS  Google Scholar 

  18. Zhao, P.; Feng, N. J.; Fang, F.; Liu, G.; Chen, L.; Meng, J.; Chen, C.; Wang, L.; Wan, H.; Guan, G. F. Facile synthesis of three-dimensional ordered macroporous Sr1−xKxTiO3 perovskites with enhanced catalytic activity for soot combustion. Catal. Sci. Technol. 2018, 8, 5462–5472.

    CAS  Google Scholar 

  19. Andana, T.; Piumetti, M.; Bensaid, S.; Veyre, L.; Thieuleux, C.; Russo, N.; Fino, D.; Quadrelli, E. A.; Pirone, R. CuO nanoparticles supported by ceria for NOx-assisted soot oxidation: Insight into catalytic activity and sintering. Appl. Catal. B Environ. 2017, 216, 41–58.

    CAS  Google Scholar 

  20. Fang, F.; Feng, N. J.; Zhao, P.; Chen, C.; Li, X.; Meng, J.; Liu, G.; Chen, L.; Wan, H.; Guan, G. F. In situ exsolution of Co/CoOx core-shell nanoparticles on double perovskite porous nanotubular webs:A synergistically active catalyst for soot efficient oxidation. Chem. Eng. J. 2019, 372, 752–764.

    CAS  Google Scholar 

  21. Wang, X.; Jin, B. F.; Feng, R. X.; Liu, W.; Weng, D.; Wu, X. D.; Liu, S. A robust core-shell silver soot oxidation catalyst driven by Co3O4: Effect of tandem oxygen delivery and Co3O4-CeO2 synergy. Appl. Catal. B Environ. 2019, 250, 132–142.

    CAS  Google Scholar 

  22. Wang, J. G.; Yang, G. Y.; Cheng, L.; Shin, E. W.; Men, Y. Three-dimensionally ordered macroporous spinel-type MCr2O4 (M = Co, Ni, Zn, Mn) catalysts with highly enhanced catalytic performance for soot combustion. Catal. Sci. Technol. 2015, 5, 4594–4601.

    CAS  Google Scholar 

  23. Piumetti, M.; van der Linden, B.; Makkee, M.; Miceli, P.; Fino, D.; Russo, N.; Bensaid, S. Contact dynamics for a solid-solid reaction mediated by gas-phase oxygen: Study on the soot oxidation over ceria-based catalysts. Appl. Catal. B Environ. 2016, 199, 96–107.

    CAS  Google Scholar 

  24. Yang, Z. Z.; Hu, W.; Zhang, N.; Li, Y. X.; Liao, Y. W. Facile synthesis of ceria-zirconia solid solutions with cubic-tetragonal interfaces and their enhanced catalytic performance in diesel soot oxidation. J. Catal. 2019, 377, 98–109.

    CAS  Google Scholar 

  25. Wei, W. F.; Cui, X. W.; Chen, W. X.; Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721.

    CAS  Google Scholar 

  26. Shen, Y. F.; Zerger, R. P.; Deguzman, R. N.; Suib, S. L.; McCurdy, L.; Potter, D. I.; O’Young, C. L. Manganese oxide octahedral molecular sieves: Preparation, characterization, and applications. Science, 1993, 260, 511–515.

    CAS  Google Scholar 

  27. Luo, T. Y.; Liu, S. R.; Li, M.; Liu, W.; Wu, X. D.; Liu, S. Ozone-assisted diesel soot combustion over Mn2O3 catalysts: A tandem work of different reactive phases. J. Catal. 2022, 408, 56–63.

    CAS  Google Scholar 

  28. Wasalathanthri, N. D.; SantaMaria, T. M.; Kriz, D. A.; Dissanayake, S. L.; Kuo, C. H.; Biswas, S.; Suib, S. L. Mesoporous manganese oxides for NO2 assisted catalytic soot oxidation. Appl. Catal. B Environ. 2017, 201, 543–551.

    CAS  Google Scholar 

  29. Ching, S.; Welch, E. J.; Hughes, S. M.; Bahadoor, A. B. F.; Suib, S. L. Nonaqueous sol-gel syntheses of microporous manganese oxides. Chem. Mater. 2002, 14, 1292–1299.

    CAS  Google Scholar 

  30. Wang, R.; Li, J. H. Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures. Environ. Sci. Technol. 2010, 44, 4282–4287.

    CAS  Google Scholar 

  31. Luo, J.; Zhang, Q. H.; Garcia-martinez, J.; Suib, S. L. Adsorptive and acidic properties, reversible lattice oxygen evolution, and catalytic mechanism of cryptomelane-type manganese oxides as oxidation catalysts. J. Am. Chem. Soc. 2008, 130, 3198–3207.

    CAS  Google Scholar 

  32. Legutko, P.; Jakubek, T.; Kaspera, W.; Stelmachowski, P.; Sojka, Z.; Kotarba, A. Soot oxidation over K-doped manganese and iron spinels—How potassium precursor nature and doping level change the catalyst activity. Catal. Commun. 2014, 43, 34–37.

    CAS  Google Scholar 

  33. Kimura, R.; Wakabayashi, J.; Elangovan, S. P.; Ogura, M.; Okubo, T. Nepheline from K2CO3/nanosized sodalite as a prospective candidate for diesel soot combustion. J. Am. Chem. Soc. 2008, 130, 12844–12845.

    CAS  Google Scholar 

  34. Ura, B.; Trawczyński, J.; Kotarba, A.; Bieniasz, W.; Illán-Gómez, M. J.; Bueno-López, A.; López-Suárez, F. E. Effect of potassium addition on catalytic activity of SrTiO3 catalyst for diesel soot combustion. Appl. Catal. B Environ. 2011, 101, 169–175.

    CAS  Google Scholar 

  35. Castoldi, L.; Matarrese, R.; Lietti, L.; Forzatti, P. Intrinsic reactivity of alkaline and alkaline-earth metal oxide catalysts for oxidation of soot. Appl. Catal. B Environ. 2009, 90, 278–285.

    CAS  Google Scholar 

  36. Shao, J.; Lan, X. E.; Zhang, C. X.; Cao, C. M.; Yu, Y. F. Recent advances in soot combustion catalysts with designed microstructures. Chin. Chem. Lett. 2022, 33, 1763–1771.

    CAS  Google Scholar 

  37. Yu, D.; Ren, Y.; Yu, X. H.; Fan, X. Q.; Wang, L. Y.; Wang, R. D.; Zhao, Z.; Cheng, K.; Chen, Y. S.; Sojka, Z. et al. Facile synthesis of birnessite-type K2Mn4O8 and cryptomelane-type K2−xMn8O16 catalysts and their excellent catalytic performance for soot combustion with high resistance to H2O and SO2. Appl. Catal. B Environ. 2021, 285, 119779.

    CAS  Google Scholar 

  38. Zhang, Z. L.; Han, D.; Wei, S. J.; Zhang, Y. X. Determination of active site densities and mechanisms for soot combustion with O2 on Fe-doped CeO2 mixed oxides. J. Catal. 2010, 276, 16–23.

    CAS  Google Scholar 

  39. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    CAS  Google Scholar 

  40. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    CAS  Google Scholar 

  41. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  42. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Google Scholar 

  43. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    CAS  Google Scholar 

  44. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Google Scholar 

  45. Cheng, L.; Men, Y.; Wang, J. G.; Wang, H.; An, W.; Wang, Y. Q.; Duan, Z. C.; Liu, J. Crystal facet-dependent reactivity of α-Mn2O3 microcrystalline catalyst for soot combustion. Appl. Catal. B Environ. 2017, 204, 374–384.

    CAS  Google Scholar 

  46. Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Google Scholar 

  47. Shi, Q. L.; Liu, T. Z.; Li, Q.; Xin, Y.; Lu, X. X.; Tang, W. X.; Zhang, Z. L.; Gao, P. X.; Anderson, J. A. Multiple strategies to decrease ignition temperature for soot combustion on ultrathin MnO2−x nanosheet array. Appl. Catal. B Environ. 2019, 246, 312–321.

    CAS  Google Scholar 

  48. Yang, J.; Zhou, H.; Wang, L.; Zhang, Y. X.; Chen, C. L.; Hu, H. L.; Li, G. Z.; Zhang, Y. J.; Ma, Y. P.; Zhang, J. Cobalt-doped K-OMS-2 nanofibers: A novel and efficient water-tolerant catalyst for the oxidation of carbon monoxide. ChemCatChem 2017, 9, 1163–1167.

    CAS  Google Scholar 

  49. Morgan Chan, Z.; Kitchaev, D. A.; Nelson Weker, J.; Schnedermann, C.; Lim, K.; Ceder, G.; Tumas, W.; Toney, M. F.; Nocera, D. G. Electrochemical trapping of metastable Mn3+ ions for activation of MnO2 oxygen evolution catalysts. Proc. Natl. Acad. Sci. USA 2018, 115, E5261–E5268.

    Google Scholar 

  50. Hou, J. T.; Li, Y. Z.; Liu, L. L.; Ren, L.; Zhao, X. J. Effect of giant oxygen vacancy defects on the catalytic oxidation of OMS-2 nanorods. J. Mater. Chem. A 2013, 1, 6736–6741.

    CAS  Google Scholar 

  51. Yang, W. H.; Peng, Y.; Wang, Y.; Wang, Y.; Liu, H.; Su, Z. A.; Yang, W. N.; Chen, J. J.; Si, W. Z.; Li, J. H. Controllable redox-induced in-situ growth of MnO2 over Mn2O3 for toluene oxidation: Active heterostructure interfaces. Appl. Catal. B Environ. 2020, 278, 119279.

    CAS  Google Scholar 

  52. Gao, Y. B.; Wang, Z. P.; Cui, C. C.; Wang, B. Q.; Liu, W. X.; Liu, W.; Wang, L. G. Amorphous manganese oxide as highly active catalyst for soot oxidation. Environ. Sci. Pollut. Res. 2020, 27, 13488–13500.

    CAS  Google Scholar 

  53. Ji, F.; Men, Y.; Wang, J. G.; Sun, Y. L.; Wang, Z. D.; Zhao, B.; Tao. X. T.; Xu, G. J. Promoting diesel soot combustion efficiency by tailoring the shapes and crystal Facets of nanoscale Mn3O4. Appl. Catal. B Environ. 2019, 242, 227–237.

    CAS  Google Scholar 

  54. Yu, Q.; Xiong, J.; Li, Z. G.; Mei, X. L.; Zhang, P.; Zhang, Y. L.; Wei, Y. C.; Zhao, Z.; Liu, J. Optimal exposed crystal facets of α-Mn2O3 catalysts with enhancing catalytic performance for soot combustion. Catal. Today 2021, 376, 229–238.

    CAS  Google Scholar 

  55. Peng, C.; Yu, D.; Zhang, C. L.; Chen, M. Z.; Wang, L. Y.; Yu, X. H.; Fan, X. Q.; Zhao, Z.; Cheng, K.; Chen, Y. S. et al. Alkali/alkaline-earth metal-modified MnOx supported on three-dimensionally ordered macroporous-mesoporous TixSi1−xO2 catalysts: Preparation and catalytic performance for soot combustion. J. Environ. Sci. 2023, 125, 82–94.

    Google Scholar 

  56. Wang, M.; Zhang, Y.; Yu, Y. B.; Shan, W. P.; He, H. Synergistic effects of multicomponents produce outstanding soot oxidation activity in a Cs/Co/MnOx catalyst. Environ. Sci. Technol. 2021, 55, 240–248.

    CAS  Google Scholar 

  57. Xiong, J.; Li, Z. G.; Zhang, P.; Yu, Q.; Li, K. X.; Zhang, Y. L.; Zhao, Z.; Liu, J.; Li, J. M.; Wei, Y. C. Optimized Pt-MnOx interface in Pt−MnOx/3DOM−Al2O3 catalysts for enhancing catalytic soot combustion. Chin. Chem. Lett. 2021, 32, 1447–1450.

    CAS  Google Scholar 

  58. Xiong, J.; Wei, Y. C.; Zhang, Y. L.; Zhang, P.; Yu, Q.; Mei, X. L.; Liu, X.; Zhao, Z.; Liu, J. Synergetic effect of K sites and Pt nanoclusters in an ordered hierarchical porous Pt-KMnOx/Ce0.25Zr0.75O2 catalyst for boosting soot oxidation. ACS Catal. 2020, 10, 7123–7135.

    CAS  Google Scholar 

  59. Becerra, M. E.; Arias, N. P.; Giraldo, O. H.; Suárez, F. E. L.; Gómez, M. J. I.; López, A. B. Soot combustion manganese catalysts prepared by thermal decomposition of KMnO4. Appl. Catal. B Environ. 2011, 102, 260–266.

    CAS  Google Scholar 

  60. Atribak, I.; Bueno-López, A.; García-García, A.; Navarro, P.; Frías, D.; Montes, M. Catalytic activity for soot combustion of birnessite and cryptomelane. Appl. Catal. B Environ. 2010, 93, 267–273.

    CAS  Google Scholar 

  61. Zhang, Z. L.; Zhang, Y. X.; Wang, Z. P.; Gao, X. Y. Catalytic performance and mechanism of potassium-promoted Mg−Al hydrotalcite mixed oxides for soot combustion with O2. J. Catal. 2010, 271, 12–21.

    CAS  Google Scholar 

  62. Cao, C. M.; Li, X. G.; Zha, Y. Q.; Zhang, J.; Hu, T. D.; Meng, M. Crossed ferric oxide nanosheets supported cobalt oxide on 3-dimensional macroporous Ni foam substrate used for diesel soot elimination under self-capture contact mode. Nanoscale 2016, 8, 5857–5864.

    CAS  Google Scholar 

  63. Zhou, J.; Qin, L. F.; Xiao, W.; Zeng, C.; Li, N.; Lv, T.; Zhu, H. Oriented growth of layered-MnO2 nanosheets over α-MnO2 nanotubes for enhanced room-temperature HCHO oxidation. Appl. Catal. B Environ. 2017, 207, 233–243.

    CAS  Google Scholar 

  64. Yu, X. H.; Ren, Y.; Yu, D.; Chen, M. Z.; Wang, L. Y.; Wang, R. D.; Fan, X. Q.; Zhao, Z.; Cheng, K.; Chen, Y. S. et al. Hierarchical porous K-OMS-2/3DOM-m Ti0.7Si0.3O2 catalysts for soot combustion:Easy preparation, high catalytic activity, and good resistance to H2O and SO2. ACS Catal. 2021, 11, 5554–5571.

    CAS  Google Scholar 

  65. Hadjiivanov, K. I. Identification of neutral and charged NxOy surface species by IR spectroscopy. Catal. Rev. 2000, 42, 71–144.

    CAS  Google Scholar 

  66. Hu, H.; Cai, S. X.; Li, H. R.; Huang, L.; Shi, L. Y.; Zhang, D. S. In situ DRIFTs Investigation of the low-temperature reaction mechanism over Mn-doped Co3O4 for the selective catalytic reduction of NOx with NH3. J. Phys. Chem. C 2015, 119, 22924–22933.

    CAS  Google Scholar 

  67. Zhang, L.; Shi, L. Y.; Huang, L.; Zhang, J. P.; Gao, R. H.; Zhang, D. S. Rational design of high-performance DeNOx catalysts based on MnxCo3−xO4 nanocages derived from metal-organic frameworks. ACS Catal. 2014, 4, 1753–1763.

    CAS  Google Scholar 

  68. Li, X. G.; Dong, Y. H.; Xian, H.; Hernández, W. Y.; Meng, M.; Zou, H. H.; Ma, A. J.; Zhang, T. Y.; Jiang, Z.; Tsubaki, N. et al. De-NOx in alternative lean/rich atmospheres on La1−xSrxCoO3 perovskites. Energy Environ. Sci. 2011, 4, 3351–3354.

    CAS  Google Scholar 

  69. Wu, X. D.; Lin, F.; Xu, H. B.; Weng, D. Effects of adsorbed and gaseous NOx species on catalytic oxidation of diesel soot with MnOx−CeO2 mixed oxides. Appl. Catal. B Environ. 2010, 96, 101–109.

    CAS  Google Scholar 

  70. Aylor, A. W.; Lobree, L. J.; Reimer, J. A.; Bell, A. T. NO adsorption, desorption, and reduction by CH4 over Mn-ZSM-5. J Catal. 1997, 170, 390–401.

    CAS  Google Scholar 

  71. Wang, Z. M.; Tezuka, S.; Kanoh, H. Characterization of the structural and surface properties of a synthesized hydrous hollandite by gaseous molecular adsorption. Chem. Mater. 2001, 13, 530–537.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Key Research and Development Program of MOST (No. 2017YFE0131200) for collaboration between China and Poland; the National Natural Science Foundation of China (Nos. 22072095 and U1908204); University Joint Education Project for China-Central and Eastern European Countries (No. 2021097); National Engineering Laboratory for Mobile Source Emission Control Technology (No. NELMS2018A04); Liaoning Provincial central government guides local science and technology development funds (No. 2022JH6/100100052); Major/Key Project of Graduate Education and Teaching Reform of Shenyang Normal University (No. YJSJG120210008/YJSJG220210022); University level innovation team of Shenyang Normal University; and Major Incubation Program of Shenyang Normal University (No. ZD201901)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuehua Yu or Zhen Zhao.

Electronic Supplementary Material

12274_2022_5242_MOESM1_ESM.pdf

K-modified MnOδ catalysts with tunnel structure and layered structure: Facile preparation and catalytic performance for soot combustion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Ren, Y., Yu, D. et al. K-modified MnOδ catalysts with tunnel structure and layered structure: Facile preparation and catalytic performance for soot combustion. Nano Res. 16, 6187–6199 (2023). https://doi.org/10.1007/s12274-022-5242-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5242-1

Keywords

Navigation