Skip to main content
Log in

Stretchable nanogenerators for scavenging mechanical energy

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Using stretchable nanogenerators to obtain disordered mechanical energy from the environment is an ideal way to realize wearable power supply equipment and self-power electronic devices, and alleviate the energy crisis. It is of great significance to integrate the stretchability into the nanogenerator, which can fit the complex shape of the target object better and is well suitable for wearable electronics. When applied to the human body, it can directly harvest human body mechanical energy to power wearable electronic devices and get rid of the trouble of charging. This paper systematically reviewed nanogenerators in stretchability, focusing on stretchable triboelectric nanogenerators, stretchable piezoelectric nanogenerators, and stretchable hybrid nanogenerators. Their physical mechanism, material selection, structure design, and output performance are discussed in detail. It is concluded that the fabrication methods of various devices can be broadly categorized into the two most important device types, namely fiber-like and planar. A detailed analysis of representative work and the latest progress in the past decade is performed. It is most important that excellent stretchability and high-power output are the key point to realize application value of stretchable nanogenerators. In addition, we discuss opportunities and challenges, as well as future development direction of stretchable nanogenerators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, J.; Hou, X. J.; Niu, X. S.; Guo, X. P.; Zhang, J.; He, J.; Guo, T.; Chou, X. J.; Xue, C. Y.; Zhang, W. D. The d-arched piezoelectric-triboelectric hybrid nanogenerator as a self-powered vibration sensor. Sens. Actuat. A: Phys. 2017, 263, 317–325.

    Article  CAS  Google Scholar 

  2. Ni, S. M.; Guo, F. Y.; Wang, D. B.; Liu, G.; Xu, Z. K.; Kong, L. P.; Wang, J. Z.; Jiao, S. J.; Zhang, Y.; Yu, Q. J. et al. Effect of MgO surface modification on the TiO2 nanowires electrode for self-powered UV photodetectors. ACS Sustainable Chem. Eng. 2018, 6, 7265–7272.

    Article  CAS  Google Scholar 

  3. Liu, H. B.; Jiang, H. E.; Du, F.; Zhang, D. P.; Li, Z. J.; Zhou, H. W. Flexible and degradable paper-based strain sensor with low cost. ACS Sustainable Chem. Eng. 2017, 5, 10538–10543.

    Article  CAS  Google Scholar 

  4. Trung, T. Q.; Lee, N. E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 2016, 28, 4338–4372.

    Article  CAS  Google Scholar 

  5. Tao, Y. R.; Wu, X. C.; Wang, W.; Wang, J. N. Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film. J. Mater. Chem. C 2015, 3, 1347–1353.

    Article  CAS  Google Scholar 

  6. Li, Y. Q.; Samad, Y. A.; Taha, T.; Cai, G. W.; Fu, S. Y.; Liao, K. Highly flexible strain sensor from tissue paper for wearable electronics. ACS Sustainable Chem. Eng. 2016, 4, 4288–4295.

    Article  CAS  Google Scholar 

  7. Song, W. J.; Park, J.; Kim, D. H.; Bae, S.; Kwak, M. J.; Shin, M.; Kim, S.; Choi, S.; Jang, J. H.; Shin, T. J. et al. Jabuticaba-inspired hybrid carbon filler/polymer electrode for use in highly stretchable aqueous Li-ion batteries. Adv. Energy Mater. 2018, 8, 1702478.

    Article  Google Scholar 

  8. Zhao, Y.; Chen, S.; Hu, J.; Yu, J. L.; Feng, G. C.; Yang, B.; Li, C. H.; Zhao, N.; Zhu, C. Z.; Xu, J. Microgel-enhanced double network hydrogel electrode with high conductivity and stability for intrinsically stretchable and flexible all-gel-state supercapacitor. ACS Appl. Mater. Interfaces 2018, 10, 19323–19330.

    Article  CAS  Google Scholar 

  9. Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88.

    Article  CAS  Google Scholar 

  10. Yun, J.; Song, C.; Lee, H.; Park, H.; Jeong, Y. R.; Kim, J. W.; Jin, S. W.; Oh, S. Y.; Sun, L. F.; Zi, G. et al. Stretchable array of highperformance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy 2018, 49, 644–654.

    Article  CAS  Google Scholar 

  11. Chandrasekhar, A.; Alluri, N. R.; Vivekananthan, V.; Park, J. H.; Kim, S. J. Sustainable biomechanical energy scavenger toward self-reliant kids’ interactive battery-free smart puzzle. ACS Sustainable Chem. Eng. 2017, 5, 7310–7316.

    Article  CAS  Google Scholar 

  12. He, J.; Wen, T.; Qian, S.; Zhang, Z. X.; Tian, Z. M.; Zhu, J.; Mu, J. L.; Hou, X. J.; Geng, W. P.; Cho, J. et al. Triboelectric-piezoelectric-electromagnetic hybrid nanogenerator for high-efficient vibration energy harvesting and self-powered wireless monitoring system. Nano Energy 2018, 43, 326–339.

    Article  CAS  Google Scholar 

  13. Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

    Article  CAS  Google Scholar 

  14. Lewis, N. S. Toward cost-effective solar energy use. Science 2007, 315, 798–801.

    Article  CAS  Google Scholar 

  15. Wang, Z. L. Self-powered nanotech. Sci. Am. 2008, 298, 82–87.

    Article  Google Scholar 

  16. Chen, X. B.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 2012, 41, 7909–7937.

    Article  CAS  Google Scholar 

  17. Wang, Z. L.; Wu, W. Z. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem., Int. Ed. 2012, 51, 11700–11721.

    Article  CAS  Google Scholar 

  18. Rogers, J. A. Nanomesh on-skin electronics. Nat. Nanotechnol. 2017, 12, 839–840.

    Article  CAS  Google Scholar 

  19. Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 2012, 24, 280–285.

    Article  CAS  Google Scholar 

  20. He, X.; Zi, Y. L.; Guo, H. Y.; Zheng, H. W.; Xi, Y.; Wu, C. S.; Wang, J.; Zhang, W.; Lu, C. H.; Wang, Z. L. A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics. Adv. Funct. Mater. 2017, 27, 1604378.

    Article  Google Scholar 

  21. Jung, W. S.; Kang, M. G.; Moon, H. G.; Baek, S. H.; Yoon, S. J.; Wang, Z. L.; Kim, S. W.; Kang, C. Y. High output piezo/triboelectric hybrid generator. Sci. Rep. 2015, 5, 9309.

    Article  CAS  Google Scholar 

  22. Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

    Article  CAS  Google Scholar 

  23. Niu, S. M.; Wang, X. F.; Yi, F.; Zhou, Y. S.; Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975.

    Article  CAS  Google Scholar 

  24. Bowen, C. R.; Kim, H. A.; Weaver, P. M.; Dunn, S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 2014, 7, 25–44.

    Article  CAS  Google Scholar 

  25. Briscoe, J.; Dunn, S. Piezoelectric nanogenerators—A review of nanostructured piezoelectric energy harvesters. Nano Energy 2015, 14, 15–29.

    Article  CAS  Google Scholar 

  26. Wang, X. D. Piezoelectric nanogenerators-harvesting ambient mechanical energy at the nanometer scale. Nano Energy 2012, 1, 13–24.

    Article  CAS  Google Scholar 

  27. Chen, Y.; Au, J.; Kazlas, P.; Ritenour, A.; Gates, H.; McCreary, M. Flexible active-matrix electronic ink display. Nature 2003, 423, 136.

    Article  CAS  Google Scholar 

  28. Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

    Article  CAS  Google Scholar 

  29. Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26, 5310–5336.

    Article  CAS  Google Scholar 

  30. Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.

    Article  CAS  Google Scholar 

  31. Sun, Y.; Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 2007, 19, 1897–1916.

    Article  CAS  Google Scholar 

  32. Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 2010, 9, 821–826.

    Article  CAS  Google Scholar 

  33. Pan, C. F.; Wu, H.; Wang, C.; Wang, B.; Zhang, L.; Cheng, Z. D.; Hu, P.; Pan, W.; Zhou, Z. Y.; Yang, X. et al. Nanowire-based high-performance “micro fuel cells”: One nanowire, one fuel cell. Adv. Mater. 2008, 20, 1644–1648.

    Article  CAS  Google Scholar 

  34. Choi, M. C.; Kim, Y.; Ha, C. S. Polymers for flexible displays: From material selection to device applications. Prog. Polym. Sci. 2008, 33, 581–630.

    Article  CAS  Google Scholar 

  35. Koo, M.; Park, K. I.; Lee, S. H.; Suh, M.; Jeon, D. Y.; Choi, J. W.; Kang, K.; Lee, K. J. Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 2012, 12, 4810–4816.

    Article  CAS  Google Scholar 

  36. Xie, K. Y.; Wei, B. Q. Materials and structures for stretchable energy storage and conversion devices. Adv. Mater. 2014, 26, 3592–3617.

    Article  CAS  Google Scholar 

  37. Wang, X. F.; Lu, X. H.; Liu, B.; Chen, D.; Tong, Y. X.; Shen, G. Z. Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 2014, 26, 4763–4782.

    Article  CAS  Google Scholar 

  38. Nyholm, L.; Nyström, G.; Mihranyan, A.; Stromme, M. Toward flexible polymer and paper-based energy storage devices. Adv. Mater. 2011, 23, 3751–3769.

    CAS  Google Scholar 

  39. Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

    Article  CAS  Google Scholar 

  40. Chandrasekhar, A.; Alluri, N. R.; Saravanakumar, B.; Selvarajan, S.; Kim, S. J. Human interactive triboelectric nanogenerator as a self-powered smart seat. ACS Appl. Mater. Interfaces 2016, 8, 9692–9699.

    Article  CAS  Google Scholar 

  41. Kanik, M.; Say, M. G.; Daglar, B.; Yavuz, A. F.; Dolas, M. H.; El-Ashry, M. M.; Bayindir, M. A motion- and sound-activated, 3D-printed, chalcogenide-based triboelectric nanogenerator. Adv. Mater. 2015, 27, 2367–2376.

    Article  CAS  Google Scholar 

  42. Khan, U.; Kim, S. W. Triboelectric nanogenerators for blue energy harvesting. ACS Nano 2016, 10, 6429–6432.

    Article  CAS  Google Scholar 

  43. Lee, S.; Bae, S. H.; Lin, L.; Yang, Y.; Park, C.; Kim, S. W.; Cha, S. N.; Kim, H.; Park, Y. J.; Wang, Z. L. Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv. Funct. Mater. 2013, 23, 2445–2449.

    Article  CAS  Google Scholar 

  44. Rodrigues, C. R. S.; Alves, C. A. S.; Puga, J.; Pereira, A. M.; Ventura, J. O. Triboelectric driven turbine to generate electricity from the motion of water. Nano Energy 2016, 30, 379–386.

    Article  CAS  Google Scholar 

  45. Wang, S. H.; Mu, X. J.; Yang, Y.; Sun, C. L.; Gu, A. Y.; Wang, Z. L. Flow-driven triboelectric generator for directly powering a wireless sensor node. Adv. Mater. 2015, 27, 240–248.

    Article  CAS  Google Scholar 

  46. Wang, X. F.; Niu, S. M.; Yi, F.; Yin, Y. J.; Hao, C. L.; Dai, K. R.; Zhang, Y.; You, Z.; Wang, Z. L. Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano 2017, 11, 1728–1735.

    Article  CAS  Google Scholar 

  47. Yoon, H. J.; Kwak, S. S.; Kim, S. M.; Kim, S. W. Aim high energy conversion efficiency in triboelectric nanogenerators. Sci. Technol. Adv. Mater. 2020, 21, 683–688.

    Article  CAS  Google Scholar 

  48. Chen, H. M.; Zhang, S. C.; Zou, Y. X.; Zhang, C.; Zheng, B.; Huang, C. L.; Zhang, B. W.; Xing, C.; Xu, Y.; Wang, J. Performance-enhanced flexible triboelectric nanogenerator based on gold chloride-doped graphene. ACS Appl. Electron. Mater. 2020, 2, 1106–1112.

    Article  CAS  Google Scholar 

  49. Wang, X. F.; Yin, Y. J.; Yi, F.; Dai, K. R.; Niu, S. M.; Han, Y. Z.; Zhang, Y.; You, Z. Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics. Nano Energy 2017, 39, 429–436.

    Article  CAS  Google Scholar 

  50. Zi, Y. L.; Guo, H. Y.; Wen, Z.; Yeh, M. H.; Hu, C. G.; Wang, Z. L. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano 2016, 10, 4797–4805.

    Article  CAS  Google Scholar 

  51. Wang, Y.; Yang, Y.; Wang, Z. L. Triboelectric nanogenerators as flexible power sources. npj Flex. Electron. 2017, 1, 10.

    Article  Google Scholar 

  52. Deng, H. T.; Zhang, X. R.; Wang, Z. Y.; Wen, D. L.; Ba, Y. Y.; Kim, B.; Han, M. D.; Zhang, H. X.; Zhang, X. S. Super-stretchable multi-sensing triboelectric nanogenerator based on liquid conductive composite. Nano Energy 2021, 83, 105823.

    Article  CAS  Google Scholar 

  53. Liang, F.; Zhao, X. J.; Li, H. Y.; Fan, Y. J.; Cao, J. W.; Wang, Z. L.; Zhu, G. Stretchable shape-adaptive liquid-solid interface nanogenerator enabled by in-situ charged nanocomposite membrane. Nano Energy 2020, 69, 104414.

    Article  CAS  Google Scholar 

  54. Xia, K. Q.; Tian, Y.; Fu, J. M.; Zhu, Z. Y.; Lu, J. G.; Zhao, Z. Y.; Tang, H. C.; Ye, Z. Z.; Xu, Z. W. Transparent and stretchable high-output triboelectric nanogenerator for high-efficiency self-charging energy storage systems. Nano Energy 2021, 87, 106210.

    Article  CAS  Google Scholar 

  55. Vera Anaya, D.; Yuce, M. R. Stretchable triboelectric sensor for measurement of the forearm muscles movements and fingers motion for Parkinson’s disease assessment and assisting technologies. Med. Devices Sens. 2021, 4, e10154.

    Article  CAS  Google Scholar 

  56. Wang, C.; Qu, X. C.; Zheng, Q.; Liu, Y.; Tan, P. C.; Shi, B. J.; Ouyang, H.; Chao, S. Y.; Zou, Y.; Zhao, C. C. et al. Stretchable, self-healing, and skin-mounted active sensor for multipoint muscle function assessment. ACS Nano 2021, 15, 10130–10140.

    Article  CAS  Google Scholar 

  57. Gao, F. F.; Zhao, X.; Zhang, Z.; An, L. L.; Xu, L. X.; Xun, X. C.; Zhao, B.; Ouyang, T.; Zhang, Y.; Liao, Q. L. et al. A stretching-insensitive, self-powered and wearable pressure sensor. Nano Energy 2022, 91, 106695.

    Article  CAS  Google Scholar 

  58. Tong, Y. X.; Feng, Z. A.; Kim, J.; Robertson, J. L.; Jia, X. T.; Johnson, B. N. 3D printed stretchable triboelectric nanogenerator fibers and devices. Nano Energy 2020, 75, 104973.

    Article  CAS  Google Scholar 

  59. Lungu, M. Electrical separation of plastic materials using the triboelectric effect. Miner. Eng. 2004, 17, 69–75.

    Article  CAS  Google Scholar 

  60. Lowell, J.; Rose-Innes, A. C. Contact electrification. Adv. Phys. 1980, 29, 947–1023.

    Article  CAS  Google Scholar 

  61. Xu, C.; Zi, Y. L.; Wang, A. C.; Zou, H. Y.; Dai, Y. J.; He, X.; Wang, P. H.; Wang, Y. C.; Feng, P. Z.; Li, D. W. et al. On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 2018, 30, 1706790.

    Article  Google Scholar 

  62. Xu, C.; Wang, A. C.; Zou, H. Y.; Zhang, B. B.; Zhang, C. L.; Zi, Y. L.; Pan, L.; Wang, P. H.; Feng, P. Z.; Lin, Z. Q. et al. Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification. Adv. Mater. 2018, 30, 1803968.

    Article  Google Scholar 

  63. Zi, Y. L.; Niu, S. M.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z. L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015, 6, 8376.

    Article  CAS  Google Scholar 

  64. Cowley, A. M.; Sze, S. M. Surface states and barrier height of metal-semiconductor systems. J. Appl. Phys. 1965, 36, 3212–3220.

    Article  CAS  Google Scholar 

  65. Gooding, D. M.; Kaufman, G. K. Tribocharging and the triboelectric series. In Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons, 2019; pp 1–14.

  66. Cottrell, P. E.; Troutman, R. R.; Ning, T. H. Hot-electron emission in N-channel IGFET’s. IEEE Trans. Electron Devices 1979, 26, 520–533.

    Article  Google Scholar 

  67. Meng, B.; Tang, W.; Too, Z. H.; Zhang, X. S.; Han, M. D.; Liu, W.; Zhang, H. X. A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ. Sci. 2013, 6, 3235–3240.

    Article  Google Scholar 

  68. Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

    Article  CAS  Google Scholar 

  69. Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane chargeseparation mechanism. Nano Lett. 2013, 13, 2226–2233.

    Article  CAS  Google Scholar 

  70. Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

    Article  CAS  Google Scholar 

  71. Yang, Y.; Zhang, H. L.; Chen, J.; Jing, Q. S.; Zhou, Y. S.; Wen, X. N.; Wang, Z. L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013, 7, 7342–7351.

    Article  CAS  Google Scholar 

  72. Zhang, X. S.; Han, M. D.; Wang, R. X.; Zhu, F. Y.; Li, Z. H.; Wang, W.; Zhang, H. X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168–1172.

    Article  CAS  Google Scholar 

  73. Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282–2289.

    Article  CAS  Google Scholar 

  74. Chen, Y. F.; Lei, H.; Gao, Z. Q.; Liu, J. Y.; Zhang, F. J.; Wen, Z.; Sun, X. H. Energy autonomous electronic skin with direct temperature-pressure perception. Nano Energy 2022, 98, 107273.

    Article  CAS  Google Scholar 

  75. Lei, H.; Cao, K. L.; Chen, Y. F.; Liang, Z. Q.; Wen, Z.; Jiang, L.; Sun, X. H. 3D-printed endoplasmic reticulum rGO microstructure based self-powered triboelectric pressure sensor. Chem. Eng. J. 2022, 445, 136821.

    Article  CAS  Google Scholar 

  76. Liu, J. Y.; Wen, Z.; Lei, H.; Gao, Z. Q.; Sun, X. H. A liquid-solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kPa−1. Nano-Micro Lett. 2022, 14, 88.

    Article  CAS  Google Scholar 

  77. Shen, H.; Lei, H.; Gu, M. W.; Miao, S.; Gao, Z. Q.; Sun, X. H.; Sun, L. N.; Chen, G. Y.; Huang, H. B.; Chen, L. G. et al. A wearable electrowetting on dielectrics sensor for real-time human sweat monitor by triboelectric field regulation. Adv. Funct. Mater. 2022, 32, 2204525.

    Article  CAS  Google Scholar 

  78. Lai, Y. C.; Deng, J. N.; Zhang, S. L.; Niu, S. M.; Guo, H. Y.; Wang, Z. L. Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing. Adv. Funct. Mater. 2017, 27, 1604462.

    Article  Google Scholar 

  79. Cheng, Y.; Lu, X.; Hoe Chan, K.; Wang, R. R.; Cao, Z. R.; Sun, J.; Wei Ho, G. A stretchable fiber nanogenerator for versatile mechanical energy harvesting and self-powered full-range personal healthcare monitoring. Nano Energy 2017, 41, 511–518.

    Article  CAS  Google Scholar 

  80. Wu, C. X.; Kim, T. W.; Li, F. S.; Guo, T. L. Wearable electricity generators fabricated utilizing transparent electronic textiles based on polyester/Ag nanowires/graphene core-shell nanocomposites. ACS Nano 2016, 10, 6449–6457.

    Article  CAS  Google Scholar 

  81. Kwak, S. S.; Kim, H.; Seung, W.; Kim, J.; Hinchet, R.; Kim, S. W. Fully stretchable textile triboelectric nanogenerator with knitted fabric structures. ACS Nano 2017, 11, 10733–10741.

    Article  CAS  Google Scholar 

  82. Xie, L. J.; Chen, X. P.; Wen, Z.; Yang, Y. Q.; Shi, J. H.; Chen, C.; Peng, M. F.; Liu, Y. N.; Sun, X. H. Spiral steel wire based fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano-Micro Lett. 2019, 11, 39.

    Article  CAS  Google Scholar 

  83. Fang, H. J.; Wang, X. D.; Li, Q.; Peng, D. F.; Yan, Q. F.; Pan, C. F. A stretchable nanogenerator with electric/light dual-mode energy conversion. Adv. Energy Mater. 2016, 6, 1600829.

    Article  Google Scholar 

  84. Zhao, S. Y.; Wang, J. N.; Du, X. Y.; Wang, J.; Cao, R.; Yin, Y. Y.; Zhang, X. L.; Yuan, Z. Q.; Xing, Y.; Pui, D. Y. H. et al. All-nanofiber-based ultralight stretchable triboelectric nanogenerator for self-powered wearable electronics. ACS Appl. Energy Mater. 2018, 1, 2326–2332.

    Article  CAS  Google Scholar 

  85. Lai, Y. C.; Deng, J. N.; Niu, S. M.; Peng, W. B.; Wu, C. S.; Liu, R. Y.; Wen, Z.; Wang, Z. L. Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications. Adv. Mater. 2016, 28, 10024–10032.

    Article  CAS  Google Scholar 

  86. Yang, Y. Q.; Sun, N.; Wen, Z.; Cheng, P.; Zheng, H. C.; Shao, H. Y.; Xia, Y. J.; Chen, C.; Lan, H. W.; Xie, X. K. et al. Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 2018, 12, 2027–2034.

    Article  CAS  Google Scholar 

  87. Qin, Z.; Yin, Y. Y.; Zhang, W. Z.; Li, C. J.; Pan, K. Wearable and stretchable triboelectric nanogenerator based on crumpled nanofibrous membranes. ACS Appl. Mater. Interfaces 2019, 11, 12452–12459.

    Article  CAS  Google Scholar 

  88. Pu, X.; Liu, M. M.; Chen, X. Y.; Sun, J. M.; Du, C. H.; Zhang, Y.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 2017, 3, e1700015.

    Article  Google Scholar 

  89. Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

    Article  CAS  Google Scholar 

  90. Waqar, S.; Wang, L.; John, S. Piezoelectric energy harvesting from intelligent textiles. In Electronic Textiles; Dias, T., Ed.; Elsevier: Amsterdam, 2015; pp 173–197.

    Chapter  Google Scholar 

  91. Wang, F.; Jiang, C. M.; Tang, C. L.; Bi, S.; Wang, Q. H.; Du, D. F.; Song, J. H. High output nano-energy cell with piezoelectric nanogenerator and porous supercapacitor dual functions—A technique to provide sustaining power by harvesting intermittent mechanical energy from surroundings. Nano Energy 2016, 21, 209–216.

    Article  CAS  Google Scholar 

  92. Dong, K.; Peng, X.; Wang, Z. L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 2020, 32, 1902549.

    Article  CAS  Google Scholar 

  93. Niu, X. S.; Jia, W.; Qian, S.; Zhu, J.; Zhang, J.; Hou, X. J.; Mu, J. L.; Geng, W. P.; Cho, J.; He, J. et al. High-performance PZT-based stretchable piezoelectric nanogenerator. ACS Sustainable Chem. Eng. 2019, 7, 979–985.

    Article  CAS  Google Scholar 

  94. Jeong, C. K.; Kim, I.; Park, K. I.; Oh, M. H.; Paik, H.; Hwang, G. T.; No, K.; Nam, Y. S.; Lee, K. J. Virus-directed design of a flexible BaTiO3 nanogenerator. ACS Nano 2013, 7, 11016–11025.

    Article  CAS  Google Scholar 

  95. Dahiya, A. S.; Morini, F.; Boubenia, S.; Justeau, C.; Nadaud, K.; Rajeev, K. P.; Alquier, D.; Poulin-Vittrant, G. Zinc oxide nanowire-parylene nanocomposite based stretchable piezoelectric nanogenerators for self-powered wearable electronics. J. Phys. Conf. Ser. 2018, 1052, 012028.

    Article  Google Scholar 

  96. Bajaj, B.; Hong, S.; Jo, S. M.; Lee, S.; Kim, H. J. Flexible carbon nanofiber electrodes for a lead zirconate titanate nanogenerator. RSC Adv. 2016, 6, 64441–64445.

    Article  CAS  Google Scholar 

  97. Sim, H. J.; Choi, C.; Lee, C. J.; Kim, Y. T.; Spinks, G. M.; Lima, M. D.; Baughman, R. H.; Kim, S. J. Flexible, stretchable and weavable piezoelectric fiber. Adv. Eng. Mater. 2015, 17, 1270–1275.

    Article  CAS  Google Scholar 

  98. Park, K. I.; Jeong, C. K.; Kim, N. K.; Lee, K. J. Stretchable piezoelectric nanocomposite generator. Nano Converg. 2016, 3, 12.

    Article  Google Scholar 

  99. Jeong, C. K.; Lee, J.; Han, S.; Ryu, J.; Hwang, G. T.; Park, D. Y.; Park, J. H.; Lee, S. S.; Byun, M.; Ko, S. H. et al. A hyperstretchable elastic-composite energy harvester. Adv. Mater. 2015, 27, 2866–2875.

    Article  CAS  Google Scholar 

  100. Duan, Y. Q.; Ding, Y. J.; Bian, J.; Xu, Z. L.; Yin, Z. P.; Huang, Y. A. Ultra-stretchable piezoelectric nanogenerators via large-scale aligned fractal inspired micro/nanofibers. Polymers 2017, 9, 714.

    Article  Google Scholar 

  101. Dahiya, A. S.; Morini, F.; Boubenia, S.; Nadaud, K.; Alquier, D.; Poulin-Vittrant, G. Organic/inorganic hybrid stretchable piezoelectric nanogenerators for self-powered wearable electronics. Adv. Mater. Technol. 2018, 3, 1700249.

    Article  Google Scholar 

  102. Chen, X. L.; Parida, K.; Wang, J. X.; Xiong, J. Q.; Lin, M. F.; Shao, J. Y.; Lee, P. S. A stretchable and transparent nanocomposite nanogenerator for self-powered physiological monitoring. ACS Appl. Mater. Interfaces 2017, 9, 42200–42209.

    Article  CAS  Google Scholar 

  103. Li, X. H.; Lin, Z. H.; Cheng, G.; Wen, X. N.; Liu, Y.; Niu, S. M.; Wang, Z. L. 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano 2014, 8, 10674–10681.

    Article  CAS  Google Scholar 

  104. Zhang, Q.; Liang, Q. J.; Zhang, Z.; Kang, Z.; Liao, Q. L.; Ding, Y.; Ma, M. Y.; Gao, F. F.; Zhao, X.; Zhang, Y. Electromagnetic shielding hybrid nanogenerator for health monitoring and protection. Adv. Funct. Mater. 2018, 28, 1703801.

    Article  Google Scholar 

  105. Zhang, K. W.; Wang, Z. L.; Yang, Y. Conductive fabric-based stretchable hybridized nanogenerator for scavenging biomechanical energy. ACS Nano 2016, 10, 4728–4734.

    Article  CAS  Google Scholar 

  106. Chen, H. T.; Song, Y.; Cheng, X. L.; Zhang, H. X. Self-powered electronic skin based on the triboelectric generator. Nano Energy 2019, 56, 252–268.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Rsearch and Development Program of China (No. 2021YFA1201604), the National Natural Science Foundation of China (No. 52072041), the Beijing Natural Science Foundation (No. JQ21007), “Practical Training Program” Project of Cross-training High-level Talents in Beijing Universities (No. NHFZ20210022/018), and the University of Chinese Academy of Sciences (No. Y8540XX2D2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Zhang or Ya Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Xu, L., Su, Y. et al. Stretchable nanogenerators for scavenging mechanical energy. Nano Res. 16, 11682–11697 (2023). https://doi.org/10.1007/s12274-022-5238-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5238-x

Keywords

Navigation