Skip to main content
Log in

Aerosolized immunotherapeutic nanoparticle inhalation potentiates PD-L1 blockade for locally advanced lung cancer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Despite therapeutic advancements, the prognosis of locally advanced non-small cell lung cancer (LANSCLC), which has invaded multiple lobes or the other lung and intrapulmonary lymph nodes, remains poor. The emergence of immunotherapy with immune checkpoint blockade (ICB) is transforming cancer treatment. However, only a fraction of lung cancer patients benefit from ICB. Significant clinical evidence suggests that the proinflammatory tumor microenvironment (TME) and programmed death-ligand 1 (PD-L1) expression correlate positively with response to the PD-1/PD-L1 blockade. We report here a liposomal nanoparticle loaded with cyclic dinucleotide and aerosolized (AeroNP-CDN) for inhalation delivery to deep-seated lung tumors and target CDN to activate stimulators of interferon (IFN) genes in macrophages and dendritic cells (DCs). Using a mouse model that recapitulates the clinical LANSCLC, we show that AeroNP-CDN efficiently mitigates the immunosuppressive TME by reprogramming tumor-associated macrophage from the M2 to M1 phenotype, activating DCs for effective tumor antigen presentation and increasing tumor-infiltrating CD8+ T cells for adaptive anticancer immunity. Intriguingly, activation of interferons by AeroNP-CDN also led to increased PD-L1 expression in lung tumors, which, however, set a stage for response to anti-PD-L1 treatment. Indeed, anti-PD-L1 antibody-mediated blockade of IFNs-induced immune inhibitory PD-1/PD-L1 signaling further prolonged the survival of the LANSCLC-bearing mice. Importantly, AeroNP-CDN alone or combination immunotherapy was safe without local or systemic immunotoxicity. In conclusion, this study demonstrates a potential nano-immunotherapy strategy for LANSCLC, and mechanistic insights into the evolution of adaptive immune resistance provide a rational combination immunotherapy to overcome it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Cancer Society. What is non-small cell lung cancer? [Online]. 2019. https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/what-is-non-small-cell-lung-cancer.html (accessed May 30, 2022)

  2. National Cancer Institute, SEER. Cancer stat facts: Lung and bronchus cancer [Online]. 2019. https://seer.cancer.gov/statfacts/html/lungb.html (accessed May 30, 2022)

  3. Postmus, P. E.; Kerr, K. M.; Oudkerk, M.; Senan, S.; Waller, D. A.; Vansteenkiste, J.; Escriu, C.; Peters, S. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28, IV1–IV21.

    CAS  Google Scholar 

  4. Aupérin, A.; Le Péchoux, C.; Rolland, E.; Curran, W. J.; Furuse, K.; Fournel, P.; Belderbos, J.; Clamon, G.; Ulutin, H. C.; Paulus, R. et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J. Clin. Oncol. 2010, 28, 2181–2190.

    Google Scholar 

  5. Barlesi, F.; Vansteenkiste, J.; Spigel, D.; Ishii, H.; Garassino, M.; de Marinis, F.; Özgüroğlu, M.; Szczesna, A.; Polychronis, A.; Uslu, R. et al. Avelumab versus docetaxel in patients with platinum-treated advanced non-small-cell lung cancer (JAVELIN Lung 200): An open-label, randomised, phase 3 study. Lancet Oncol. 2018, 19, 1468–1479.

    CAS  Google Scholar 

  6. Brahmer, J. R.; Tykodi, S. S.; Chow, L. Q. M.; Hwu, W. J.; Topalian, S. L.; Hwu, P.; Drake, C. G.; Camacho, L. H.; Kauh, J.; Odunsi, K. et al. Safety and activity of anti-PD-Ll antibody in patients with advanced cancer. N. Engl. J. Med. 2012, 366, 2455–2465.

    CAS  Google Scholar 

  7. Brahmer, J.; Reckamp, K. L.; Baas, P.; Crinò, L.; Eberhardt, W. E. E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E. E.; Holgado, E. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 2015, 373, 123–135.

    CAS  Google Scholar 

  8. Yu, Y. F.; Zeng, D. Q.; Ou, Q. Y.; Liu, S. B.; Li, A. L.; Chen, Y. J.; Lin, D. G.; Gao, Q. L.; Zhou, H. Y.; Liao, W. J. et al. Association of survival and immune-related biomarkers with immunotherapy in patients with non-small cell lung cancer: A meta-analysis and individual patient-level analysis. JAMA Netw. Open 2019, 2, el96879.

    Google Scholar 

  9. Barber, G. N. STING: Infection, inflammation and cancer. Nat. Rev. Immunol. 2015, 15, 760–770.

    CAS  Google Scholar 

  10. Woo, S. R.; Fuertes, M. B.; Corrales, L.; Spranger, S.; Furdyna, M. J.; Leung, M. Y. K.; Duggan, R.; Wang, Y.; Barber, G. N.; Fitzgerald, K. A. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 2014, 41, 830–840.

    CAS  Google Scholar 

  11. Sun, L.; Wu, J.; Du, F.; Chen, X.; Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013, 339, 786–791.

    CAS  Google Scholar 

  12. Liu, Y.; Wang, L. L.; Song, Q. Q.; Ali, M.; Crowe, W. N.; Kucera, G. L.; Hawkins, G. A.; Soker, S.; Thomas, K. W.; Miller, L. D. et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-Ll therapy for malignant pleural effusion. Nat. Nanotechnol. 2022, 17, 206–216.

    CAS  Google Scholar 

  13. Park, C. G.; Haitl, C. A.; Schmid, D.; Carmona, E. M.; Kim, H. J.; Goldberg, M. S. Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci. Transl. Med. 2018, 10, eaar1916.

    Google Scholar 

  14. Chao, Y.; Xu, L. G.; Liang, C.; Feng, L. Z.; Xu, J.; Dong, Z. L.; Tian, L. L.; Yi, X.; Yang, K.; Liu, Z. Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. Nat. Biomed. Eng. 2018, 2, 611–621.

    CAS  Google Scholar 

  15. Lee, D.; Huntoon, K.; Wang, Y. F.; Jiang, W.; Kim, B. Y. S. Harnessing innate immunity using biomaterials for cancer immunotherapy. Adv. Mater. 2021, 33, 2007576.

    CAS  Google Scholar 

  16. Jin, Q. T.; Liu, Z.; Chen, Q. Controlled release of immunotherapeutics for enhanced cancer immunotherapy after local delivery. J. Control. Release 2021, 329, 882–893.

    CAS  Google Scholar 

  17. Chen, Q.; Wang, C.; Zhang, X. D.; Chen, G. J.; Hu, Q. Y.; Li, H. J.; Wang, J. Q.; Wen, D.; Zhang, Y. Q.; Lu, Y. F. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 2019, 14, 89–97.

    CAS  Google Scholar 

  18. Zhang, B. D.; Wu, J. J.; Li, W. H.; Hu, H. G.; Zhao, L.; He, P. Y.; Zhao, Y. F.; Li, Y. M. STING and TLR7/8 agonists-based nanovaccines for synergistic antitumor immune activation. Nano Res. 2022, 15, 6328–6339.

    CAS  Google Scholar 

  19. Cheng, N.; Watkins-Schulz, R.; Junkins, R. D.; David, C. N.; Johnson, B. M.; Montgomery, S. A.; Peine, K. J.; Darr, D. B.; Yuan, H.; McKinnon, K. P. et al. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight 2018, 3, e120638.

    Google Scholar 

  20. Garland, K. M.; Sheehy, T. L.; Wilson, J. T. Chemical and biomolecular strategies for STING pathway activation in cancer immunotherapy. Chem. Rev. 2022, 122, 5977–6039.

    CAS  Google Scholar 

  21. Liang, J. J.; Wang, H. F.; Ding, W. X.; Huang, J. X.; Zhou, X. F.; Wang, H. Y.; Dong, X.; Li, G. Y.; Chen, E. G.; Zhou, F. et al. Nanoparticle-enhanced chemo-immunotherapy to trigger robust antitumor immunity. Sci. Adv. 2020, 6, eabc3646.

    CAS  Google Scholar 

  22. Wang, X.; Wilhelm, J.; Li, W.; Li, S. X.; Wang, Z. H.; Huang, G.; Wang, J.; Tang, H. L.; Khorsandi, S.; Sun, Z. C. et al. Polycarbonate-based ultra-pH sensitive nanoparticles improve therapeutic window. Nat. Commun. 2020, 11, 5828.

    CAS  Google Scholar 

  23. Bennett, Z. T.; Li, S. X.; Sumer, B. D.; Gao, J. M. Polyvalent design in the cGAS-STING pathway. Semin. Immunol. 2021, 56, 101580.

    CAS  Google Scholar 

  24. Sun, X. Q.; Zhang, Y.; Li, J. Q.; Park, K. S.; Han, K.; Zhou, X. W.; Xu, Y.; Nam, J.; Xu, J.; Shi, X. Y. et al. Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. Nat. Nanotechnol. 2021, 16, 1260–1270.

    CAS  Google Scholar 

  25. Qiu, X. Y.; Qu, Y.; Guo, B. B.; Zheng, H.; Meng, F. H.; Zhong, Z. Y. Micellar paclitaxel boosts ICD and chemo-immunotherapy of metastatic triple negative breast cancer. J. Control. Release 2022, 341, 498–510.

    CAS  Google Scholar 

  26. Lu, Z. D.; Chen, Y. F.; Shen, S.; Xu, C. F.; Wang, J. Co-delivery of phagocytosis checkpoint silencer and stimulator of interferon genes agonist for synergetic cancer immunotherapy. ACS Appl. Mater. Interfaces 2021, 13, 29424–29438.

    CAS  Google Scholar 

  27. Chen, Y. P.; Xu, L.; Tang, T. W.; Chen, C. H.; Zheng, Q. H.; Liu, T. P.; Mou, C. Y.; Wu, C. H.; Wu, S. H. STING activator c-di-GMP-loaded mesoporous silica nanoparticles enhance immunotherapy against breast cancer. ACS Appl. Mater. Interfaces 2020, 12, 56741–56752.

    CAS  Google Scholar 

  28. Nakamura, T.; Sato, T.; Endo, R.; Sasaki, S.; Takahashi, N.; Sato, Y.; Hyodo, M.; Hayakawa, Y.; Harashima, H. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation. J. Immunother. Cancer 2021, 9, e002852.

    Google Scholar 

  29. Fuertes, M. B.; Kacha, A. K.; Kline, J.; Woo, S. R.; Kranz, D. M.; Murphy, K. M.; Gajewski, T. F. Host type IIFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J. Exp. Med. 2011, 208, 2005–2016.

    CAS  Google Scholar 

  30. Diamond, M. S.; Kinder, M.; Matsushita, H.; Mashayekhi, M.; Dunn, G. P.; Archambault, J. M.; Lee, H.; Arthur, C. D.; White, J. M.; Kalinke, U. et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 2011, 208, 1989–2003.

    CAS  Google Scholar 

  31. Benci, J. L.; Johnson, L. R.; Choa, R.; Xu, Y. M.; Qiu, J. Y.; Zhou, Z. L.; Xu, B. H.; Ye, D.; Nathanson, K. L.; June, C. H. et al. Opposing functions of interferon coordinate adaptive and innate immune responses to cancer immune checkpoint blockade. Cell 2019, 178, 933–948.E14.

    CAS  Google Scholar 

  32. Gulen, M. F.; Koch, U.; Haag, S. M.; Schuler, F.; Apetoh, L.; Villunger, A.; Radtke, F.; Ablasser, A. Signalling strength determines proapoptotic functions of STING. Nat. Commun. 2017, 8, 427.

    Google Scholar 

  33. Cerboni, S.; Jeremiah, N.; Gentili, M.; Gehrmann, U.; Conrad, C.; Stolzenberg, M. C.; Picard, C.; Neven, B.; Fischer, A.; Amigorena, S. et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J. Exp. Med. 2017, 214, 1769–1785.

    CAS  Google Scholar 

  34. Larkin, B.; Ilyukha, V.; Sorokin, M.; Buzdin, A.; Vannier, E.; Poltorak, A. Cutting edge: Activation of STING in T cells induces type I IFN responses and cell death. J. Immunol. 2017, 199, 397–402.

    CAS  Google Scholar 

  35. Benci, J. L.; Xu, B. H.; Qiu, Y.; Wu, T. J.; Dada, H.; Twyman-Saint Victor, C.; Cucolo, L.; Lee, D. S. M.; Pauken, K. E.; Huang, A. C. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 2016, 167, 1540–1554.e12.

    CAS  Google Scholar 

  36. Chen, J. Z.; Cao, Y. H.; Markelc, B.; Kaeppler, J.; Vermeer, J. A. F.; Muschel, R. J. Type I IFN protects cancer cells from CD8+ T cell-mediated cytotoxicity after radiation. J. Clin. Invest. 2019, 129, 4224–4238.

    Google Scholar 

  37. Liu, Y.; Crowe, W. N.; Wang, L. L.; Lu, Y.; Petty, W. J.; Habib, A. A.; Zhao, D. W. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat. Commun. 2019, 10, 5108.

    CAS  Google Scholar 

  38. Gong, K.; Guo, G.; Panchani, N.; Bender, M. E.; Gerber, D. E.; Minna, J. D.; Fattah, F.; Gao, B. N.; Peyton, M.; Kernstine, K. et al. EGFR inhibition triggers an adaptive response by co-opting antiviral signaling pathways in lung cancer. Nat. Cancer 2020, 1, 394–409.

    CAS  Google Scholar 

  39. Freeman, G. J.; Casasnovas, J. M.; Umetsu, D. T.; DeKruyff, R. H. TIM genes: A family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol. Rev. 2010, 235, 172–189.

    CAS  Google Scholar 

  40. Zhao, D. W.; Stafford, J. H.; Zhou, H. L.; Thorpe, P. E. Near-infrared optical imaging of exposed phosphatidylserine in a mouse glioma model. Transl. Oncol. 2011, 4, 355–364.

    Google Scholar 

  41. Knight, V.; Koshkina, N. V.; Waldrep, J. C.; Giovanella, B. C.; Gilbert, B. E. Anticancer effect of 9-nitrocamptothecin liposome aerosol on human cancer xenografts in nude mice. Cancer Chemother. Pharmacol. 1999, 44, 177–186.

    CAS  Google Scholar 

  42. Deng, L. F.; Liang, H.; Xu, M.; Yang, X. M.; Burnette, B.; Arina, A.; Li, X. D.; Mauceri, H.; Beckett, M.; Darga, T. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 2014, 41, 843–852.

    CAS  Google Scholar 

  43. Baird, J. R.; Friedman, D.; Cottam, B.; Dubensky, T. W. Jr.; Kanne, D. B.; Bambina, S.; Bahjat, K.; Crittenden, M. R.; Gough, M. J. Radiotherapy combined with novel STING-targeting oligonucleotides results in regression of established tumors. Cancer Res. 2016, 76, 50–61.

    CAS  Google Scholar 

  44. Reits, E. A.; Hodge, J. W.; Herberts, C. A.; Groothuis, T. A.; Chakraborty, M.; Wansley, E. K.; Camphausen, K.; Luiten, R. M.; de Ru, A. H.; Neijssen, J. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 2006, 203, 1259–1271.

    CAS  Google Scholar 

  45. Ko, E. C.; Raben, D.; Formenti, S. C. The integration of radiotherapy with immunotherapy for the treatment of non-small cell lung cancer. Clin. Cancer Res. 2018, 24, 5792–5806.

    CAS  Google Scholar 

  46. Wang, J.; Li, Z. M.; Wang, Z. T.; Yu, Y. H.; Li, D.; Li, B. S.; Ding, J. X. Nanomaterials for combinational radio-immuno oncotherapy. Adv. Funct. Mater. 2020, 30, 1910676.

    CAS  Google Scholar 

  47. den Haan, J. M. M.; Lehar, S. M.; Bevan, M. J. Cd8+ but not Cd8 dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 2000, 192, 1685–1696.

    CAS  Google Scholar 

  48. Spranger, S.; Dai, D.; Horton, B.; Gajewski, T. F. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 2017, 31, 711–723.e4.

    CAS  Google Scholar 

  49. Sato, E.; Olson, S. H.; Ahn, J.; Bundy, B.; Nishikawa, H.; Qian, F.; Jungbluth, A. A.; Frosina, D.; Gnjatic, S.; Ambrosone, C. et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl. Acad. Sci. USA 2005, 102, 18538–18543.

    CAS  Google Scholar 

  50. Ganesan, A. P.; Johansson, M.; Ruffell, B.; Yagui-Beltrán, A.; Lau, J.; Jablons, D. M.; Coussens, L. M. Tumor-infiltrating regulatory T cells inhibit endogenous cytotoxic T cell responses to lung adenocarcinoma. J. Immunol. 2013, 191, 2009–2017.

    CAS  Google Scholar 

  51. Greenwald, R. J.; Freeman, G. J.; Sharpe, A. H. The B7 family revisited. Annu. Rev. Immunol. 2005, 23, 515–548.

    Google Scholar 

  52. Li, H. Y.; McSharry, M.; Bullock, B.; Nguyen, T. T.; Kwak, J.; Poczobutt, J. M.; Sippel, T. R.; Heasley, L. E.; Weiser-Evans, M. C.; Clambey, E. T. et al. The tumor microenvironment regulates sensitivity of murine lung tumors to PD-1/PD-L1 antibody blockade. Cancer Immunol. Res. 2017, 5, 767–777.

    CAS  Google Scholar 

  53. Zhang, L.; Zhang, Z. W.; Mason, R. P.; Sarkaria, J. N.; Zhao, D. W. Convertible MRI contrast: Sensing the delivery and release of anti-glioma nano-drugs. Sci. Rep. 2015, 5, 9874.

    CAS  Google Scholar 

  54. Zhang, L.; Zhou, H. L.; Belzile, O.; Thorpe, P.; Zhao, D. W. Phosphatidylserine-targeted bimodal liposomal nanoparticles for in vivo imaging of breast cancer in mice. J. Control. Release 2014, 183, 114–123.

    CAS  Google Scholar 

  55. Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005, 4, 145–160.

    CAS  Google Scholar 

  56. Sato, T.; Shimosato, T.; Ueda, A.; Ishigatsubo, Y.; Klinman, D. M. Intrapulmonary delivery of CpG microparticles eliminates lung tumors. Mol. Cancer Ther. 2015, 14, 2198–2205.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yong Lu for providing the LLC-Luc cell line, and Drs. J. Daniel Bourland and Ravi Singh for technical and collegial support. The research is supported in part by NIH/NCI 1R01CA264102-01 (D. Z.) and Wake Forest Comprehensive Cancer Center P30 CA01219740. A. A. H. is supported by funding from the Department of Veteran’s Affairs (No. 2I01BX002559-07) and from the National Institutes of Health (No. 1R01CA244212-01A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawen Zhao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Crowe, W.N., Wang, L. et al. Aerosolized immunotherapeutic nanoparticle inhalation potentiates PD-L1 blockade for locally advanced lung cancer. Nano Res. 16, 5300–5310 (2023). https://doi.org/10.1007/s12274-022-5205-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5205-6

Keywords

Navigation