Skip to main content
Log in

Colossal structural distortion and interlayer-coupling suppression in a van der Waals crystal induced by atomic vacancies

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The interlayer coupling in van der Waals (vdW) crystals has substantial effects on the performance of materials. However, an in-depth understanding of the microscopic mechanism on the defect-modulated interlayer coupling is often elusive, owing partly to the challenge of atomic-scale characterization. Here we report the native Se-vacancies in a charge-density-wave metal 2H-NbSe2, as well as their influence on the local atomic configurations and interlayer coupling. Our low-temperature scanning tunneling microscopy (STM) measurements, complemented by density functional theory calculations, indicate that the Se-vacancies in few-layer NbSe2 can generate obvious atomic distortions due to the Jahn-Teller effect, thus breaking the rotational symmetry on the nanoscale. Moreover, these vacancies can locally generate an in-gap state in single-layer NbSe2, and more importantly, lead to a colossal suppression of interlayer coupling in the bilayer system. Our results provide clear structural and electronic fingerprints around the vacancies in vdW crystals, paving the way for developing functional vdW devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

    Article  CAS  Google Scholar 

  2. Rhodes, D.; Chae, S. H.; Ribeiro-Palau, R.; Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 2019, 18, 541–549.

    Article  CAS  Google Scholar 

  3. Liu, H.; Grasseschi, D.; Dodda, A.; Fujisawa, K.; Olson, D.; Kahn, E.; Zhang, F.; Zhang, T. Y.; Lei, Y.; Branco, R. B. N. et al. Spontaneous chemical functionalization via coordination of Au single atoms on monolayer MoS2. Sci. Adv. 2020, 6, eabc9308.

    Article  CAS  Google Scholar 

  4. Liang, Q. J.; Zhang, Q.; Zhao, X. X.; Liu, M. Z.; Wee, A. T. S. Defect engineering of two-dimensional transition-metal dichalcogenides: Applications, challenges, and opportunities. ACS Nano 2021, 15, 2165–2181.

    Article  CAS  Google Scholar 

  5. Nair, R. R.; Sepioni, M.; Tsai, I. L.; Lehtinen, O.; Keinonen, J.; Krasheninnikov, A. V.; Thomson, T.; Geim, A. K.; Grigorieva, I. V. Spin-half paramagnetism in graphene induced by point defects. Nat. Phys. 2012, 8, 199–202.

    Article  CAS  Google Scholar 

  6. González-Herrero, H.; Gómez-Rodríguez, J. M.; Mallet, P.; Moaied, M.; Palacios, J. J.; Salgado, C.; Ugeda, M. M.; Veuillen, J. Y.; Yndurain, F.; Brihuega, I. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 2016, 352, 437–441.

    Article  Google Scholar 

  7. Zhang, Y.; Li, S. Y.; Huang, H. Q.; Li, W. T.; Qiao, J. B.; Wang, W. X.; Yin, L. J.; Bai, K. K.; Duan, W. H.; He, L. Scanning tunneling microscopy of the π magnetism of a single carbon vacancy in graphene. Phys. Rev. Lett. 2016, 117, 166801.

    Article  Google Scholar 

  8. Zhang, Y.; Gao, F.; Gao, S. W.; He, L. Tunable magnetism of a single-carbon vacancy in graphene. Sci. Bull. 2020, 65, 194–200.

    Article  CAS  Google Scholar 

  9. Tran, T. T.; Bray, K.; Ford, M. J.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 2016, 11, 37–41.

    Article  CAS  Google Scholar 

  10. Li, G. Q.; Zhang, D.; Qiao, Q.; Yu, Y. F.; Peterson, D.; Zafar, A.; Kumar, R.; Curtarolo, S.; Hunte, F.; Shannon, S. et al. All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 16632–16638.

    Article  CAS  Google Scholar 

  11. Kwon, I. S.; Kwak, I. H.; Kim, J. Y.; Debela, T. T.; Park, Y. C.; Park, J.; Kang, H. S. Concurrent vacancy and adatom defects of Mo1−xNbxSe2 alloy nanosheets enhance electrochemical performance of hydrogen evolution reaction. ACS Nano 2021, 15, 5467–5477.

    Article  CAS  Google Scholar 

  12. Lin, Y. C.; Dumcenco, D. O.; Komsa, H. P.; Niimi, Y.; Krasheninnikov, A. V.; Huang, Y. S.; Suenaga, K. Properties of individual dopant atoms in single-layer MoS2: Atomic structure, migration, and enhanced reactivity. Adv. Mater. 2014, 26, 2857–2861.

    Article  CAS  Google Scholar 

  13. Nguyen, L.; Komsa, H. P.; Khestanova, E.; Kashtiban, R. J.; Peters, J. J. P.; Lawlor, S.; Sanchez, A. M.; Sloan, J.; Gorbachev, R. V.; Grigorieva, I. V. et al. Atomic defects and doping of monolayer NbSe2. ACS Nano 2017, 11, 2894–2904.

    Article  CAS  Google Scholar 

  14. Hong, J. H.; Hu, Z. X.; Probert, M.; Li, K.; Lv, D. H.; Yang, X. N.; Gu, L.; Mao, N. N.; Feng, Q. L.; Xie, L. M. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293.

    Article  CAS  Google Scholar 

  15. Bradley, A. J.; Ugeda, M. M.; Da Jornada, F. H.; Qiu, D. Y.; Ruan, W.; Zhang, Y.; Wickenburg, S.; Riss, A.; Lu, J.; Mo, S. K. et al. Probing the role of interlayer coupling and coulomb interactions on electronic structure in few-layer MoSe2 nanostructures. Nano Lett. 2015, 15, 2594–2599.

    Article  CAS  Google Scholar 

  16. Xi, X. X.; Wang, Z. F.; Zhao, W. W.; Park, J. H.; Law, K. T.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 2016, 12, 139–143.

    Article  CAS  Google Scholar 

  17. Hamill, A.; Heischmidt, B.; Sohn, E.; Shaffer, D.; Tsai, K. T.; Zhang, X.; Xi, X. X.; Suslov, A.; Berger, H.; Forró, L. et al. Twofold symmetric superconductivity in few-layer NbSe2. Nat. Phys. 2021, 17, 949–954.

    Article  CAS  Google Scholar 

  18. Liu, L. W.; Yang, H.; Huang, Y. T.; Song, X.; Zhang, Q. Z.; Huang, Z. P.; Hou, Y. H.; Chen, Y. Y.; Xu, Z. Q.; Zhang, T. et al. Direct identification of Mott Hubbard band pattern beyond charge density wave superlattice in monolayer 1T-NbSe2. Nat. Commun. 2021, 12, 1978.

    Article  CAS  Google Scholar 

  19. Zhang, Q. Z.; Zhang, Y.; Hou, Y. H.; Xu, R. Z.; Jia, L. G.; Huang, Z. P.; Hao, X. Y.; Zhou, J. D.; Zhang, T.; Liu, L. W. et al. Nanoscale control of one-dimensional confined states in strongly correlated homojunctions. Nano Lett. 2022, 22, 1190–1197.

    Article  CAS  Google Scholar 

  20. Zhang, Q. Z.; Fan, J. H.; Zhang, T.; Wang, J. Z.; Hao, X. Y.; Xie, Y. M.; Huang, Z. P.; Chen, Y. Y.; Liu, M.; Jia, L. G. et al. Visualization of edge-modulated charge-density-wave orders in monolayer transition-metal-dichalcogenide metal. Commun. Phys. 2022, 5, 117.

    Article  CAS  Google Scholar 

  21. Lin, D. J.; Li, S. C.; Wen, J. S.; Berger, H.; Forró, L.; Zhou, H. B.; Jia, S.; Taniguchi, T.; Watanabe, K.; Xi, X. X. et al. Patterns and driving forces of dimensionality-dependent charge density waves in 2H-type transition metal dichalcogenides. Nat. Commun. 2020, 11, 2406.

    Article  CAS  Google Scholar 

  22. Xi, X. X.; Zhao, L.; Wang, Z. F.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 2015, 10, 765–769.

    Article  CAS  Google Scholar 

  23. Gye, G.; Oh, E.; Yeom, H. W. Topological landscape of competing charge density waves in 2H-NbSe2. Phys. Rev. Lett. 2019, 122, 016403.

    Article  CAS  Google Scholar 

  24. Pásztor, Á.; Scarfato, A.; Spera, M.; Flicker, F.; Barreteau, C.; Giannini, E.; Van Wezel, J.; Renner, C. Multiband charge density wave exposed in a transition metal dichalcogenide. Nat. Commun. 2021, 12, 6037.

    Article  Google Scholar 

  25. Dreher, P.; Wan, W.; Chikina, A.; Bianchi, M.; Guo, H. J.; Harsh, R.; Mañas-Valero, S.; Coronado, E.; Martínez-Galera, A. J.; Hofmann, P. et al. Proximity effects on the charge density wave order and superconductivity in single-layer NbSe2. ACS Nano 2021, 15, 19430–19438.

    Article  CAS  Google Scholar 

  26. Lian, C. S.; Si, C.; Duan, W. H. Unveiling charge-density wave, superconductivity, and their competitive nature in two-dimensional NbSe2. Nano Lett. 2018, 18, 2924–2929.

    Article  CAS  Google Scholar 

  27. Guster, B.; Rubio-Verdú, C.; Robles, R.; Zaldívar, J.; Dreher, P.; Pruneda, M.; Silva-Guillén, J. Á.; Choi, D. J.; Pascual, J. I.; Ugeda, M. M. et al. Coexistence of elastic modulations in the charge density wave state of 2H-NbSe2. Nano Lett. 2019, 19, 3027–3032.

    Article  CAS  Google Scholar 

  28. Ugeda, M. M.; Bradley, A. J.; Zhang, Y.; Onishi, S.; Chen, Y.; Ruan, W.; Ojeda-Aristizabal, C.; Ryu, H.; Edmonds, M. T.; Tsai, H. Z. et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 2016, 12, 92–97.

    Article  CAS  Google Scholar 

  29. Silva-Guillén, J. Á.; Ordejón, P.; Guinea, F.; Canadell, E. Electronic structure of 2H-NbSe2 single-layers in the CDW state. 2D Mater. 2016, 3, 035028.

    Article  Google Scholar 

  30. Zhao, Y. D.; Qiao, J. S.; Yu, P.; Hu, Z. X.; Lin, Z. Y.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016, 28, 2399–2407.

    Article  CAS  Google Scholar 

  31. Arguello, C. J.; Chockalingam, S. P.; Rosenthal, E. P.; Zhao, L.; Gutiérrez, C.; Kang, J. H.; Chung, W. C.; Fernandes, R. M.; Jia, S.; Millis, A. J. et al. Visualizing the charge density wave transition in 2H-NbSe2 in real space. Phys. Rev. B 2014, 89, 235115.

    Article  Google Scholar 

  32. Okamoto, J. I.; Arguello, C. J.; Rosenthal, E. P.; Pasupathy, A. N.; Millis, A. J. Experimental evidence for a Bragg glass density wave phase in a transition-metal dichalcogenide. Phys. Rev. Lett. 2015, 114, 026802.

    Article  CAS  Google Scholar 

  33. Hildebrand, B.; Jaouen, T.; Mottas, M. L.; Monney, G.; Barreteau, C.; Giannini, E.; Bowler, D. R.; Aebi, P. Local real-space view of the achiral 1T-TiSe2 2 × 2 × 2 charge density wave. Phys. Rev. Lett. 2018, 120, 136404.

    Article  CAS  Google Scholar 

  34. Zheng, H. S.; Choi, Y.; Baniasadi, F.; Hu, D. K.; Jiao, L. Y.; Park, K.; Tao, C. G. Visualization of point defects in ultrathin layered 1T-PtSe2. 2D Mater. 2019, 6, 041005.

    Article  CAS  Google Scholar 

  35. Oh, E.; Gye, G.; Yeom, H. W. Defect-selective charge-density-wave condensation in 2H-NbSe2. Phys. Rev. Lett. 2020, 125, 036804.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financial supported by National Natural Science Foundation of China (Nos. 92163206, 61725107, 12274026, 61971035, 62271048, 11934003, 21961132023, and U1930402), National Key Research and Development Program Program of China (Nos. 2020YFA0308800, 2021YFA1400100, 2022YFA1402502, and 2022YFA1402602), Beijing Natural Science Foundation (No. Z190006), China Postdoctoral Science Foundation (No. 2021M700407), Villum Fonden (No. 00013340), and the Danish Research Foundation (No. DNRF103) for the Center for Nanostructured Graphene (CNG). Computer infrastructure resources are provided by the Niflheim supercomputer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Zhang or Yeliang Wang.

Electronic supplementary material

12274_2022_5203_MOESM1_ESM.pdf

Colossal structural distortion and interlayer-coupling suppression in a van der Waals crystal induced by atomic vacancies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, L., Gao, F., Zhang, Y. et al. Colossal structural distortion and interlayer-coupling suppression in a van der Waals crystal induced by atomic vacancies. Nano Res. 16, 5715–5720 (2023). https://doi.org/10.1007/s12274-022-5203-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5203-8

Keywords

Navigation