Skip to main content
Log in

Nanogenerator-based bidirectional pressure sensor array and its demonstration in underwater invasive species detection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Assessment of spawning-phase dynamics is an essential prerequisite to successful control of invasive sea lampreys in Great Lakes areas, which cause catastrophic damages in both commercial fishery and ecological systems. However, current assessment strategies may pose challenges for lake-wide abundance estimation and non-target anadromous species preservation. Here, we demonstrate an efficacious species-specific non-destructive sensing system based on porous ferroelectret nanogenerator for in-situ monitoring of lamprey spawning migration using their unique suction behavior. Simulations show that the porous structure enables a redistribution of surface charges under bidirectional deformations, which allows the detection of both positive and negative pressures. The quasi-piezoelectric effect is further validated by quantitative analysis in a wide pressure range of −50 to 60 kPa, providing detailed insights into transduction working principles. For reliable lamprey detection, a 4 × 4-pixel sensor array is developed and integrated with a complementary metal-oxide-semiconductor (CMOS) based signal processing array thus constituting a sensing panel capable of recording oral suction patterns in an underwater environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, B. R.; Tibbles, J. J. Sea lamprey (Petromyzon marinus) in Lakes Huron, Michigan, and superior: History of invasion and control, 1936–78. Can. J. Fish. Aquatic Sci. 1980, 37, 1780–1801.

    Article  Google Scholar 

  2. Lark, J. G. I. An early record of the sea lamprey (Petromyzon marinus) from Lake Ontario. J. Fish. Board Can. 1973, 30, 131–133.

    Article  Google Scholar 

  3. Johnson, N. S.; Lewandoski, S. A.; Merkes, C. Assessment of sea lamprey (Petromyzon marinus) diet using dna metabarcoding of feces. Ecol. Indic. 2021, 125, 107605.

    Article  Google Scholar 

  4. Bryan, M. B.; Zalinski, D.; Filcek, K. B.; Libants, S.; Li, W.; Scribner, K. T. Patterns of invasion and colonization of the sea lamprey (Petromyzon marinus) in North America as revealed by microsatellite genotypes. Mol. Ecol. 2005, 14, 3757–3773.

    Article  CAS  Google Scholar 

  5. Cuhel, R. L.; Aguilar, C. Ecosystem transformations of the Laurentian Great Lake Michigan by nonindigenous biological invaders. Annu. Rev. Mar. Sci. 2013, 5, 289–320.

    Article  Google Scholar 

  6. Docker, M. F.; Bravener, G. A.; Garroway, C. J.; Hrodey, P. J.; Hume, J. B.; Johnson, N. S.; Lewandoski, S. A.; Ogden, J. L.; Zollweg-Horan, E. C. A review of sea lamprey dispersal and population structure in the Great Lakes and the implications for control. J. Great Lakes Res. 2021, 47, S549–S569.

    Article  Google Scholar 

  7. Miehls, S.; Sullivan, P.; Twohey, M.; Barber, J.; McDonald, R. The future of barriers and trapping methods in the sea lamprey (Petromyzon marinus) control program in the Laurentian Great Lakes. Rev. Fish Biol. Fish. 2020, 30, 1–24.

    Article  Google Scholar 

  8. Jones, M. L. Toward improved assessment of sea lamprey population dynamics in support of cost-effective sea lamprey management. J. Great Lakes Res. 2007, 33, 35–47.

    Article  Google Scholar 

  9. Sard, N. M.; Smith, S. R.; Homola, J. J.; Kanefsky, J.; Bravener, G.; Adams, J. V.; Holbrook, C. M.; Hrodey, P. J.; Tallon, K.; Scribner, K. T. Rapture (RAD capture) panel facilitates analyses characterizing sea lamprey reproductive ecology and movement dynamics. Ecol. Evol. 2020, 10, 1469–1488.

    Article  Google Scholar 

  10. Adams, J. V.; Barber, J. M.; Bravener, G. A.; Lewandoski, S. A. Quantifying Great Lakes sea lamprey populations using an index of adults. J. Great Lakes Res. 2021, 47, S335–S346.

    Article  Google Scholar 

  11. Robinson, K. F.; Miehls, S. M.; Siefkes, M. J. Understanding sea lamprey abundances in the Great Lakes prior to broad implementation of sea lamprey control. J. Great Lakes Res. 2021, 47, S328–S334.

    Article  Google Scholar 

  12. Gingera, T. D.; Steeves, T. B.; Boguski, D. A.; Whyard, S.; Li, W. M.; Docker, M. F. Detection and identification of lampreys in Great Lakes streams using environmental DNA. J. Great Lakes Res. 2016, 42, 649–659.

    Article  CAS  Google Scholar 

  13. Schloesser, N. A.; Merkes, C. M.; Rees, C. B.; Amberg, J. J.; Steeves, T. B.; Docker, M. F. Correlating sea lamprey density with environmental DNA detections in the lab. Manage. Biol. Invasions 2018, 9, 483–495.

    Article  Google Scholar 

  14. Mize, E. L.; Erickson, R. A.; Merkes, C. M.; Berndt, N.; Bockrath, K.; Credico, J.; Grueneis, N.; Merry, J.; Mosel, K.; Tuttle-Lau, M. et al. Refinement of eDNA as an early monitoring tool at the landscape-level: Study design considerations. Ecol. Appl. 2019, 29, e01951.

    Article  CAS  Google Scholar 

  15. Zielinski, D. P.; McLaughlin, R.; Castro-Santos, T.; Paudel, B.; Hrodey, P.; Muir, A. Alternative sea lamprey barrier technologies: History as a control tool. Rev. Fish. Sci. Aquac. 2019, 27, 438–457.

    Article  Google Scholar 

  16. Hubbs, C. L.; Pope, T. E. B. The spread of the sea lamprey through the great lakes. Trans. Am. Fish. Soc. 1937, 66, 172–176.

    Article  Google Scholar 

  17. Shi, H. Y.; Holbrook, C. M.; Cao, Y. Q.; Sepúlveda, N.; Tan, X. B. Measurement of suction pressure dynamics of sea lampreys, Petromyzon marinus. PLoS One 2021, 16, e0247884.

    Article  CAS  Google Scholar 

  18. González-Afanador, I.; Shi, H. Y.; Holbrook, C.; Tan, X. B.; Sepúlveda, N. Invasive sea lamprey detection and characterization using interdigitated electrode (IDE) contact sensor. IEEE Sens. J. 2021, 21, 27947–27956.

    Article  Google Scholar 

  19. Shi, H. Y.; González-Afanador, I.; Holbrook, C.; Sepúlveda, N.; Tan, X. B. Soft pressure sensor for underwater sea lamprey detection. IEEE Sens. J. 2022, 22, 9932–9944.

    Article  CAS  Google Scholar 

  20. Shi, H. Y.; Al-Rubaiai, M.; Holbrook, C. M.; Miao, J. S.; Pinto, T.; Wang, C.; Tan, X. B. Screen-printed soft capacitive sensors for spatial mapping of both positive and negative pressures. Adv. Funct. Mater. 2019, 29, 1809116.

    Article  Google Scholar 

  21. Chen, Y. Y.; Xie, R. J.; Zou, B. H.; Liu, Y. H.; Zhang, K.; Li, S.; Zheng, B.; Zhang, W. N.; Wu, J. S.; Huo, F. W. CNT@leather-based electronic bidirectional pressure sensor. Sci China Technol Sci. 2020, 63, 2137–2146.

    Article  CAS  Google Scholar 

  22. Bai, N. N.; Wang, L.; Wang, Q.; Deng, J.; Wang, Y.; Lu, P.; Huang, J.; Li, G.; Zhang, Y.; Yang, J. L. et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 2020, 11, 209.

    Article  CAS  Google Scholar 

  23. Ji, B.; Zhou, Q.; Lei, M.; Ding, S.; Song, Q.; Gao, Y. B.; Li, S. B.; Xu, Y.; Zhou, Y. N.; Zhou, B. P. Gradient architecture-enabled capacitive tactile sensor with high sensitivity and ultrabroad linearity range. Small 2021, 17, 2103312.

    Article  CAS  Google Scholar 

  24. Boutry, C. M.; Beker, L.; Kaizawa, Y.; Vassos, C.; Tran, H.; Hinckley, A. C.; Pfattner, R.; Niu, S. M.; Li, J. H.; Claverie, J. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 2019, 3, 47–57.

    Article  CAS  Google Scholar 

  25. Yoo, D.; Won, D. J.; Cho, W.; Lim, J.; Kim, J. Double side electromagnetic interference-shielded bending-insensitive capacitive-type flexible touch sensor with linear response over a wide detection range. Adv. Mater. Technol. 2021, 6, 2100358.

    Article  CAS  Google Scholar 

  26. Lin, C. M.; Lin, L. Y.; Fang, W. Monolithic integration of carbon nanotubes based physical sensors. In 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Hong Kong, China, 2010, pp 55–58.

  27. Atalay, O.; Atalay, A.; Gafford, J.; Walsh, C. A highly sensitive capacitive-based soft pressure sensor based on a conductive fabric and a microporous dielectric layer. Adv. Mater. Technol. 2018, 3, 1700237.

    Article  Google Scholar 

  28. Ruth, S. R. A.; Feig, V. R.; Kim, M. G.; Khan, Y.; Phong, J. K.; Bao, Z. N. Flexible fringe effect capacitive sensors with simultaneous high-performance contact and non-contact sensing capabilities. Small Struct. 2021, 2, 2000079.

    Article  Google Scholar 

  29. Zhang, Y.; Bowen, C. R.; Ghosh, S. K.; Mandal, D.; Khanbareh, H.; Arafa, M.; Wan, C. Y. Ferroelectret materials and devices for energy harvesting applications. Nano Energy 2019, 57, 118–140.

    Article  CAS  Google Scholar 

  30. Cao, Y. Q.; Sepúlveda, N. Design of flexible piezoelectric gyroscope for structural health monitoring. Appl. Phys. Lett. 2019, 115, 241901.

    Article  Google Scholar 

  31. Cao, Y. Q.; Shi, H. Y.; Tan, X. B.; Sepúlveda, N. Enabling negative pressure sensing through ferroelectret device. IEEE Sens. Lett. 2022, 6, 2500704.

    Article  Google Scholar 

  32. Cao, Y. Q.; Li, W.; Sepúlveda, N. Performance of self-powered, water-resistant bending sensor using transverse piezoelectric effect of polypropylene ferroelectret polymer. IEEE Sens. J. 2019, 19, 10327–10335.

    Article  CAS  Google Scholar 

  33. Johnson, N. S.; Yun, S. S.; Thompson, H. T.; Brant, C. O.; Li, W. M. A synthesized pheromone induces upstream movement in female sea lamprey and summons them into traps. Proc. Natl. Acad. Sci. USA 2009, 106, 1021–1026.

    Article  CAS  Google Scholar 

  34. Johnson, N. S.; Snow, B.; Bruning, T.; Jubar, A. A seasonal electric barrier blocks invasive adult sea lamprey (Petromyzon marinus) and reduces production of larvae. J. Great Lakes Res. 2021, 47, S310–S319.

    Article  Google Scholar 

  35. Hu, S. M.; Han, J.; Shi, Z. J.; Chen, K.; Xu, N.; Wang, Y. F.; Zheng, R. Z.; Tao, Y. Z.; Sun, Q. J.; Wang, Z. L. et al. Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nano-Micro Lett. 2022, 14, 115.

    Article  CAS  Google Scholar 

  36. Sun, J. G.; Schütz, U.; Tu, K. K.; Koch, S. M.; Roman, G.; Stucki, S.; Chen, F.; Ding, Y.; Yan, W. Q.; Wu, C. S. et al. Scalable and sustainable wood for efficient mechanical energy conversion in buildings via triboelectric effects. Nano Energy 2022, 102, 107670.

    Article  CAS  Google Scholar 

  37. Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

    Article  CAS  Google Scholar 

  38. Wang, H. L.; Guo, Z. H.; Pu, X.; Wang, Z. L. Ultralight iontronic triboelectric mechanoreceptor with high specific outputs for epidermal electronics. Nano-Micro Lett. 2022, 14, 86.

    Article  Google Scholar 

  39. Chen, P. F.; Luo, Y. J.; Cheng, R. W.; Shu, S.; An, J.; Berbille, A.; Jiang, T.; Wang, Z. L. Achieving high power density and durability of sliding mode triboelectric nanogenerator by double charge supplement strategy. Adv. Energy Mater. 2022, 12, 2201813.

    Article  CAS  Google Scholar 

  40. Li, W.; Torres, D.; Wang, T. Y.; Wang, C.; Sepúlveda, N. Flexible and biocompatible polypropylene ferroelectret nanogenerator (FENG): On the path toward wearable devices powered by human motion. Nano Energy 2016, 30, 649–657.

    Article  CAS  Google Scholar 

  41. Cao, Y. Q.; Figueroa, J.; Li, W.; Chen, Z. Q.; Wang, Z. L.; Sepúlveda, N. Understanding the dynamic response in ferroelectret nanogenerators to enable self-powered tactile systems and human-controlled micro-robots. Nano Energy 2019, 63, 103852.

    Article  CAS  Google Scholar 

  42. Cao, Y. Q.; Figueroa, J.; Pastrana, J. J.; Li, W.; Chen, Z. Q.; Wang, Z. L.; Sepúlveda, N. Flexible ferroelectret polymer for self-powering devices and energy storage systems. ACS Appl. Mater. Interfaces 2019, 11, 17400–17409.

    Article  CAS  Google Scholar 

  43. Wan, H. C.; Cao, Y. Q.; Lo, L. W.; Zhao, J. Y.; Sepúlveda, N.; Wang, C. Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano 2020, 14, 10402–10412.

    Article  CAS  Google Scholar 

  44. Wan, H. C.; Zhao, J. Y.; Lo, L. W.; Cao, Y. Q.; Sepúlveda, N.; Wang, C. Multimodal artificial neurological sensory—memory system based on flexible carbon nanotube synaptic transistor. ACS Nano 2021, 15, 14587–14597.

    Article  CAS  Google Scholar 

  45. He, J.; Zhang, Y. F.; Zhou, R. H.; Meng, L. R.; Chen, T.; Mai, W. J.; Pan, C. F. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects. J. Materiomics 2020, 6, 86–101.

    Article  Google Scholar 

  46. Li, J.; Bao, R. R.; Tao, J.; Peng, Y. Y.; Pan, C. F. Recent progress in flexible pressure sensor arrays: From design to applications. J. Mater. Chem. C 2018, 6, 11878–11892.

    Article  CAS  Google Scholar 

  47. Gupta, S.; Yogeswaran, N.; Giacomozzi, F.; Lorenzelli, L.; Dahiya, R. Touch sensor based on flexible ALN piezocapacitor coupled with MOSFET. IEEE Sens. J. 2020, 20, 6810–6817.

    Article  CAS  Google Scholar 

  48. Hahn, C. M.; Iwanowicz, L. R.; Cornman, R. S.; Conway, C. M.; Winton, J. R.; Blazer, V. S. Characterization of a novel hepadnavirus in the white sucker (Catostomus commersonii) from the Great Lakes region of the United States. J. Virol. 2015, 89, 11801–11811.

    Article  CAS  Google Scholar 

  49. Wang, N. Z.; Daniels, R.; Connelly, L.; Sotzing, M.; Wu, C.; Gerhard, R.; Sotzing, G. A.; Cao, Y. All-organic flexible ferroelectret nanogenerator with fabric-based electrodes for self-powered body area networks. Small 2021, 17, 2103161.

    Article  CAS  Google Scholar 

  50. Oh, H.; Yi, G. C.; Yip, M.; Dayeh, S. A. Scalable tactile sensor arrays on flexible substrates with high spatiotemporal resolution enabling slip and grip for closed-loop robotics. Sci. Adv. 2020, 6, eabd7795.

    Article  CAS  Google Scholar 

  51. Fissette, S. D.; Buchinger, T. J.; Wagner, C. M.; Johnson, N. S.; Scott, A. M.; Li, W. M. Progress towards integrating an understanding of chemical ecology into sea lamprey control. J. Great Lakes Res. 2021, 47, S660–S672.

    Article  CAS  Google Scholar 

  52. Lin, W. K.; Wang, B.; Peng, G. X.; Shan, Y.; Hu, H.; Yang, Z. B. Skin-inspired piezoelectric tactile sensor array with crosstalk-free row+column electrodes for spatiotemporally distinguishing diverse stimuli. Adv. Sci. 2021, 8, 2002817.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Nos. U21A20519 and 62103369), the Michigan State University Foundation Strategic Partnership (No. 16-SPG-Full-3236), and the Great Lakes Fishery Commission (No. 2018_TAN_54069). The authors would also like to thank Dr. C. M. Holbrook for his great assistance in the sea lamprey tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Sepúlveda.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Shi, H., Tan, X. et al. Nanogenerator-based bidirectional pressure sensor array and its demonstration in underwater invasive species detection. Nano Res. 16, 11822–11831 (2023). https://doi.org/10.1007/s12274-022-5195-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5195-4

Keywords

Navigation