Skip to main content
Log in

Piezoelectric soft robot driven by mechanical energy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Power sources and energy-harvesting schemes are still grand challenges for soft robots. Notably, compared with other power sources, triboelectric nanogenerators (TENGs) have shown great potential because of their low manufacturing and fabrication costs, outstanding resilience, remarkable stability, and environmental friendliness. Herein, a triboelectric effect-driven piezoelectric soft robot (TEPSR) system is proposed, which integrates a rotary freestanding triboelectric nanogenerator (RF-TENG) to drive a soft robot comprising a piezoelectric unimorph and electrostatic footpads. Based on the natural triboelectrification, through converting mechanical energy into electricity, TENG provides a unique approach for actuation and manipulation of the soft robot. The perfect combination provides the most straightforward way for creating a self-powered system. Experimentally, under the power of RF-TENG, the soft robot reaches a maximum moving speed of 10 cm per second and a turning rate of 89.7° per second, respectively. The actuation and manipulation demonstration are intuitively accomplished by maneuvering the robot around a maze with a 71 cm track within 28 s. For autonomous feedback controls, one practical application is carrying two infrared sensors on board to realize obstacle avoidance in an unstructured environment. Moreover, a micro-camera was equipped with the soft robot to provide real-time “first-person” video streaming, enhancing its detection capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rus, D.; Tolley, M. T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475.

    CAS  Google Scholar 

  2. Deimel, R.; Brock, O. A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 2015, 35, 161–185.

    Google Scholar 

  3. Lai, Y. C.; Deng, J. N.; Liu, R. Y.; Hsiao, Y. C.; Zhang, S. L.; Peng, W. B.; Wu, H. M.; Wang, X. F.; Wang, Z. L. Actively perceiving and responsive soft robots enabled by self-powered, highly extensible, and highly sensitive triboelectric proximity- and pressure-sensing skins. Adv. Mater. 2018, 30, 1801114.

    Google Scholar 

  4. Ren, Z. Y.; Hu, W. Q.; Dong, X. G.; Sitti, M. Multi-functional soft-bodied jellyfish-like swimming. Nat. Commun. 2019, 10, 2703.

    Google Scholar 

  5. Kornbluh, R. D.; Pelrine, R.; Pei, Q. B.; Heydt, R.; Stanford, S.; Oh, S.; Eckerle, J. Electroelastomers: Applications of dielectric elastomer transducers for actuation, generation, and smart structures. In Proceedings of SPIE 4698, Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, San Diego, USA, 2002, pp 254–270.

  6. Chen, S. H.; Tan, M. W. M.; Gong, X. F.; Lee, P. S. Low-voltage soft actuators for interactive human-machine interfaces. Adv. Intellig. Syst. 2022, 4, 2100075.

    Google Scholar 

  7. Wu, Y. C.; Yim, J. K.; Liang, J. M.; Shao, Z. C.; Qi, M. J.; Zhong, J. W.; Luo, Z. H.; Yan, X. J.; Zhang, M.; Wang, X. H. et al. Insect-scale fast moving and ultrarobust soft robot. Sci. Robot. 2019, 4, eaax1594.

    Google Scholar 

  8. Liang, J. M.; Wu, Y. C.; Yim, J. K.; Chen, H. M.; Miao, Z. C.; Liu, H. X.; Liu, Y.; Liu, Y. X.; Wang, D. K.; Qiu, W. Y. et al. Electrostatic footpads enable agile insect-scale soft robots with trajectory control. Sci. Robot. 2021, 6, eabe7906.

    Google Scholar 

  9. Wang, W.; Lee, J. Y.; Rodrigue, H.; Song, S. H.; Chu, W. S.; Ahn, S. H. Locomotion of inchworm-inspired robot made of smart soft composite (SSC). Bioinspir. Biomim. 2014, 9, 046006.

    Google Scholar 

  10. Felton, S. M.; Tolley, M. T.; Shin, B.; Onal, C. D.; Demaine, E. D.; Rus, D.; Wood, R. J. Self-folding with shape memory composites. Soft Matter 2013, 9, 7688–7694.

    CAS  Google Scholar 

  11. Chen, T.; Bilal, O. R.; Shea, K.; Daraio, C. Harnessing bistability for directional propulsion of soft, untethered robots. Proc. Natl. Acad. Sci. USA 2018, 115, 5698–5702.

    CAS  Google Scholar 

  12. Qian, X. J.; Chen, Q. M.; Yang, Y.; Xu, Y. S.; Li, Z.; Wang, Z. H.; Wu, Y. H.; Wei, Y.; Ji, Y. Untethered recyclable tubular actuators with versatile locomotion for soft continuum robots. Adv. Mater. 2018, 30, 1801103.

    Google Scholar 

  13. Yang, Y.; Pei, Z. Q.; Li, Z.; Wei, Y.; Ji, Y. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold. J. Am. Chem. Soc. 2016, 138, 2118–2121.

    CAS  Google Scholar 

  14. Wang, E.; Desai, M. S.; Lee, S. W. Light-controlled graphene-elastin composite hydrogel actuators. Nano Lett. 2013, 13, 2826–2830.

    CAS  Google Scholar 

  15. Breger, J. C.; Yoon, C.; Xiao, R.; Kwag, H. R.; Wang, M. O.; Fisher, J. P.; Nguyen, T. D.; Gracias, D. H. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl. Mater. Interfaces 2015, 7, 3398–3405.

    CAS  Google Scholar 

  16. Tian, S. D.; Li, S. J.; Hu, Y. J.; Wang, W.; Yu, A. F.; Wan, L. Y.; Zhai, J. Y. A polymeric bilayer multi-legged soft millirobot with dual actuation and humidity sensing. Sensors 2021, 21, 1972.

    Google Scholar 

  17. Peng, Y. D.; He, P. S.; Guo, R. Q.; Lin, L. W. Bioinspired light-driven soft robots by a facile two-mode laser engraving and cutting process. In 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, USA, 2021, pp 10–13.

  18. El-Atab, N.; Mishra, R. B.; Al-Modaf, F.; Joharji, L.; Alsharif, A. A.; Alamoudi, H.; Diaz, M.; Qaiser, N.; Hussain, M. M. Soft actuators for soft robotic applications: A review. Adv. Intellig. Syst. 2020, 2, 2000128.

    Google Scholar 

  19. Hines, L.; Petersen, K.; Lum, G. Z.; Sitti, M. Soft actuators for small-scale robotics. Adv. Mater. 2017, 29, 1603483.

    Google Scholar 

  20. Ji, X. B.; Liu, X. C.; Cacucciolo, V.; Imboden, M.; Civet, Y.; El Haitami, A.; Cantin, S.; Perriard, Y.; Shea, H. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 2019, 4, eaaz6451.

    Google Scholar 

  21. Yang, G. Z.; Bellingham, J.; Dupont, P. E.; Fischer, P.; Floridi, L.; Full, R.; Jacobstein, N.; Kumar, V.; McNutt, M.; Merrifield, R. et al. The grand challenges of Science Robotics. Sci. Robot. 2018, 3, eaar7650.

    Google Scholar 

  22. Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y. W.; Su, J.; Zhang, H. G. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.

    Google Scholar 

  23. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    CAS  Google Scholar 

  24. Bai, P.; Zhu, G.; Lin, Z. H.; Jing, Q. S.; Chen, J.; Zhang, G.; Ma, J. S.; Wang, Z. L. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 2013, 7, 3713–3719.

    CAS  Google Scholar 

  25. Chen, B.; Yang, Y.; Wang, Z. L. Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 2018, 8, 1702649.

    Google Scholar 

  26. Jiang, T.; Yao, Y. Y.; Xu, L.; Zhang, L. M.; Xiao, T. X.; Wang, Z. L. Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy 2017, 31, 560–567.

    CAS  Google Scholar 

  27. Jia, M. M.; Guo, P. W.; Wang, W.; Yu, A. F.; Zhang, Y. F.; Wang, Z. L.; Zhai, J. Y. Tactile tribotronic reconfigurable p-n junctions for artificial synapses. Sci. Bull. 2022, 67, 803–812.

    CAS  Google Scholar 

  28. Nie, J. H.; Chen, X. Y.; Wang, Z. L. Electrically responsive materials and devices directly driven by the high voltage of triboelectric nanogenerators. Adv. Funct. Mater. 2019, 29, 1806351.

    CAS  Google Scholar 

  29. Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

    Google Scholar 

  30. Chen, X. Y.; Jiang, T.; Yao, Y. Y.; Xu, L.; Zhao, Z. F.; Wang, Z. L. Stimulating acrylic elastomers by a triboelectric nanogenerator-toward self-powered electronic skin and artificial muscle. Adv. Funct. Mater. 2016, 26, 4906–4913.

    CAS  Google Scholar 

  31. Chen, X. Y.; Pu, X.; Jiang, T.; Yu, A. F.; Xu, L.; Wang, Z. L. Tunable optical modulator by coupling a triboelectric nanogenerator and a dielectric elastomer. Adv. Funct. Mater. 2017, 27, 1603788.

    Google Scholar 

  32. Zhang, C.; Tang, W.; Pang, Y. K.; Han, C. B.; Wang, Z. L. Active micro-actuators for optical modulation based on a planar sliding triboelectric nanogenerator. Adv. Mater. 2015, 27, 719–726.

    CAS  Google Scholar 

  33. Chen, X. Y.; Iwamoto, M.; Shi, Z. M.; Zhang, L. M.; Wang, Z. L. Self-powered trace memorization by conjunction of contact-electrification and ferroelectricity. Adv. Funct. Mater. 2015, 25, 739–747.

    Google Scholar 

  34. Lee, J. H.; Hinchet, R.; Kim, T. Y.; Ryu, H.; Seung, W.; Yoon, H. J.; Kim, S. W. Control of skin potential by triboelectrification with ferroelectric polymers. Adv. Mater. 2015, 27, 5553–5558.

    CAS  Google Scholar 

  35. Bu, T. Z.; Yang, H.; Liu, W. B.; Pang, Y. K.; Zhang, C.; Wang, Z. L. Triboelectric effect-driven liquid metal actuators. Soft Robot. 2019, 6, 664–670.

    Google Scholar 

  36. Sun, W. J.; Li, B.; Zhang, F.; Fang, C. L.; Lu, Y. J.; Gao, X.; Cao, C. J.; Chen, G. M.; Zhang, C.; Wang, Z. L. TENG-bot: Triboelectric nanogenerator powered soft robot made of uni-directional dielectric elastomer. Nano Energy 2021, 85, 106012.

    CAS  Google Scholar 

  37. Liu, Y.; Chen, B. D.; Li, W.; Zu, L. L.; Tang, W.; Wang, Z. L. Bioinspired triboelectric soft robot driven by mechanical energy. Adv. Funct. Mater. 2021, 31, 2104770.

    CAS  Google Scholar 

  38. Jung, K.; Koo, J. C.; Nam, J. D.; Lee, Y. K.; Choi, H. R. Artificial annelid robot driven by soft actuators. Bioinspir. Biomim. 2007, 2, S42–S49.

    Google Scholar 

  39. Shintake, J.; Rosset, S.; Schubert, B.; Floreano, D.; Shea, H. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv. Mater. 2016, 28, 231–238.

    CAS  Google Scholar 

  40. Xu, P.; Wang, X. Y.; Wang, S. Y.; Chen, T. Y.; Liu, J. H.; Zheng, J. X.; Li, W. X.; Xu, M. Y.; Tao, J.; Xie, G. M. A triboelectric-based artificial whisker for reactive obstacle avoidance and local mapping. Research (Wash. D. C.) 2021, 2021, 9864967.

    CAS  Google Scholar 

  41. Ma, K. Y.; Chirarattananon, P.; Fuller, S. B.; Wood, R. J. Controlled flight of a biologically inspired, insect-scale robot. Science 2013, 340, 603–607.

    CAS  Google Scholar 

  42. Liu, S. Y.; Li, Y. Y.; Guo, W.; Huang, X.; Xu, L.; Lai, Y. C.; Zhang, C.; Wu, H. Triboelectric nanogenerators enabled sensing and actuation for robotics. Nano Energy 2019, 65, 104005.

    CAS  Google Scholar 

  43. Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

    CAS  Google Scholar 

  44. Han, C. B.; Zhang, C.; Tang, W.; Li, X. H.; Wang, Z. L. High power triboelectric nanogenerator based on printed circuit board (PCB) technology. Nano Res. 2015, 8, 722–730.

    CAS  Google Scholar 

  45. Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

    Google Scholar 

  46. Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

    CAS  Google Scholar 

  47. Du, Y. H.; Peng, B.; Zhou, W.; Wu, Y. C. A piezoelectric water skating microrobot steers through ripple interference. In 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, Japan, 2022, pp 644–647.

  48. Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.

    Google Scholar 

  49. Niu, S. M.; Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192.

    CAS  Google Scholar 

  50. Hsueh, C. H. Modeling of elastic deformation of multilayers due to residual stresses and external bending. J. Appl. Phys. 2002, 91, 9652–9656.

    CAS  Google Scholar 

  51. Ghaderiaram, A.; Bazrafshan, A.; Firouzi, K.; Kolahdouz, M. A multi-mode R-TENG for self-powered anemometer under IoT network. Nano Energy 2021, 87, 106170.

    CAS  Google Scholar 

  52. Zi, Y. L.; Niu, S. M.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z. L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015, 6, 8376.

    CAS  Google Scholar 

  53. Dudley, R. The Biomechanics of Insect Flight: Form, Function, Evolution; Princeton University Press: Princeton, 2002.

    Google Scholar 

  54. Chen, Y. F.; Zhao, H. C.; Mao, J.; Chirarattananon, P.; Helbling, E. F.; Hyun, N. S. P.; Clarke, D. R.; Wood, R. J. Controlled flight of a microrobot powered by soft artificial muscles. Nature 2019, 575, 324–329.

    CAS  Google Scholar 

  55. Kim, S.; Wensing, P. M. Design of dynamic legged robots. Foundat. Trends® Robot. 2017, 5, 117–190.

    Google Scholar 

  56. Jayaram, K.; Shum, J.; Castellanos, S.; Helbling, E. F.; Wood, R. J. Scaling down an insect-size microrobot, HAMR-VI into HAMR-Jr. In 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020, pp 10305–10311.

  57. Chen, A. S.; Bergbreiter, S. Electroadhesive feet for turning control in legged robots. In 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 2016, pp 3806–3812.

  58. Koh, K. H.; Chetty, R. M. K.; Ponnambalam, S. Modeling and simulation of electrostatic adhesion for wall climbing robot. In 2011 IEEE International Conference on Robotics and Biomimetics, Karon Beach, Thailand, 2011, pp 2031–2036.

  59. Iyer, V.; Najafi, A.; James, J.; Fuller, S.; Gollakota, S. Wireless steerable vision for live insects and insect-scale robots. Sci. Robot. 2020, 5, eabb0839.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Shenzhen Fundamental Research Funds (No. JCYJ20220530143011026), and Science and Technology Plan projects in Sichuan Province (No. 2020YFSY0050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohao Wang, Wenbo Ding or Min Zhang.

Electronic Supplementary Material

Piezoelectric soft robot driven by mechanical energy

Supplementary material, approximately 5.50 MB.

Supplementary material, approximately 7.05 MB.

Supplementary material, approximately 29.2 MB.

Supplementary material, approximately 15.0 MB.

Supplementary material, approximately 7.87 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Miao, Z., Wang, Z. et al. Piezoelectric soft robot driven by mechanical energy. Nano Res. 16, 4970–4979 (2023). https://doi.org/10.1007/s12274-022-5180-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5180-y

Keywords

Navigation