Skip to main content
Log in

Boosting the capability of Li2C2O4 as cathode pre-lithiation additive for lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Li2C2O4, with a high theoretical capacity of 525 mAh·g−1 and good air stability, is regarded as a more attractive cathode pre-lithiation additive in contrast to the reported typical inorganic pre-lithiation compounds which are quite air sensitive. However, its obtained capacity is much lower than the theoretical value and its delithiation potential (> 4.7 V) is too high to match with the most commercial cathode materials, which greatly impedes its practical application. Herein, we greatly improve the pre-lithiation performance of Li2C2O4 as cathode additive with fulfilled capacity at a much-reduced delithiation voltage, enabling its wide applicability for typical commercial cathodes. We increase the capacity of Li2C2O4 from 436 to 525 mAh·g−1 by reducing its particle size. Through optimizing the types of conductive additives, introducing nano-morphological NiO, MnO2, etc. as catalysts, and innovatively designing a bilayer electrode, the delithiation potential of Li2C2O4 is successfully reduced from 4.778 to 4.288 V. We systematically study different particle size, conductive additives, and catalysts on the delithiation behavior of Li2C2O4. Finally, it is applied to pre-lithiate the hard carbon anode, and it is found that Li2C2O4 could effectively increase the capacity of the full cell from 79.0 to 140.0 mAh·g−1 in the first cycle. In conclusion, our study proves that improving the reactivity is an effective strategy to boost the pre-lithiation of Li2C2O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.

    CAS  Google Scholar 

  2. Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456.

    CAS  Google Scholar 

  3. Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

    CAS  Google Scholar 

  4. Kim, W. S.; Choi, J.; Hong, S. H. Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery. Nano Res. 2016, 9, 2174–2181.

    CAS  Google Scholar 

  5. Chae, S.; Ko, M.; Kim, K.; Ahn, K.; Cho, J. Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 2017, 1, 47–60.

    CAS  Google Scholar 

  6. Ryu, J.; Hong, D.; Lee, H. W.; Park, S. Practical considerations of Si-based anodes for lithium-ion battery applications. Nano Res. 2017, 10, 3970–4002.

    CAS  Google Scholar 

  7. Soto, F. A.; Yan, P. F.; Engelhard, M. H.; Marzouk, A.; Wang, C. M.; Xu, G. L.; Chen, Z. H.; Amine, K.; Liu, J.; Sprenkle, V. L. et al. Tuning the solid electrolyte interphase for selective Li- and Na-ion storage in hard carbon. Adv. Mater. 2017, 29, 1606860.

    Google Scholar 

  8. Sun, C. K.; Zhang, X.; Li, C.; Wang, K.; Sun, X. Z.; Ma, Y. W. Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors. Energy Storage Mater. 2020, 32, 497–516.

    Google Scholar 

  9. Yamamura, H.; Nobuhara, K.; Nakanishi, S.; Iba, H.; Okada, S. Investigation of the irreversible reaction mechanism and the reactive trigger on SiO anode material for lithium-ion battery. J. Ceram. Soc. Japan 2011, 119, 855–860.

    CAS  Google Scholar 

  10. Zou, K. Y.; Deng, W. T.; Cai, P.; Deng, X. L.; Wang, B. W.; Liu, C.; Li, J. Y.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: Concepts, applications, and perspectives. Adv. Funct. Mater. 2021, 31, 2005581.

    CAS  Google Scholar 

  11. Zhan, R. M.; Wang, X. C.; Chen, Z. H.; Seh, Z. W.; Wang, L.; Sun, Y. M. Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries. Adv. Energy Mater. 2021, 11, 2101565.

    CAS  Google Scholar 

  12. Min, X. Q.; Xu, G. J.; Xie, B.; Guan, P.; Sun, M. L.; Cui, G. L. Challenges of prelithiation strategies for next generation high energy lithium-ion batteries. Energy Storage Mater. 2022, 47, 297–318.

    Google Scholar 

  13. Holtstiege, F.; Bärmann, P.; Nölle, R.; Winter, M.; Placke, T. Pre-lithiation strategies for rechargeable energy storage technologies: Concepts, promises and challenges. Batteries 2018, 4, 4.

    Google Scholar 

  14. Jin, L. M.; Shen, C.; Wu, Q.; Shellikeri, A.; Zheng, J. S.; Zhang, C. M.; Zheng, J. P. Pre-lithiation strategies for next-generation practical lithium-ion batteries. Adv. Sci. 2021, 8, 2005031.

    CAS  Google Scholar 

  15. Arnaiz, M.; Ajuria, J. Pre-lithiation strategies for lithium ion capacitors: Past, present, and future. Batter. Supercaps 2021, 4, 733–748.

    CAS  Google Scholar 

  16. Li, F. F.; Wang, G. W.; Zheng, D.; Zhang, X. X.; Abegglen, C. J.; Qu, H. N.; Qu, D. Y. Controlled prelithiation of SnO2/C nanocomposite anodes for building full lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 19423–19430.

    CAS  Google Scholar 

  17. Shen, Y. F.; Qian, J. F.; Yang, H. X.; Zhong, F. P.; Ai, X. P. Chemically prelithiated hard-carbon anode for high power and high capacity Li-ion batteries. Small 2020, 16, 1907602.

    CAS  Google Scholar 

  18. Wang, G. W.; Li, F. F.; Liu, D.; Zheng, D.; Luo, Y.; Qu, D. Y.; Ding, T. Y.; Qu, D. Y. Chemical prelithiation of negative electrodes in ambient air for advanced lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 8699–8703.

    CAS  Google Scholar 

  19. Xu, H.; Li, S.; Zhang, C.; Chen, X. L.; Liu, W. J.; Zheng, Y. H.; Xie, Y.; Huang, Y. H.; Li, J. Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries. Energy Environ. Sci. 2019, 12, 2991–3000.

    CAS  Google Scholar 

  20. Yan, M. Y.; Li, G.; Zhang, J.; Tian, Y. F.; Yin, Y. X.; Zhang, C. J.; Jiang, K. C.; Xu, Q.; Li, H. L.; Guo, Y. G. Enabling SiOx/C anode with high initial Coulombic efficiency through a chemical pre-lithiation strategy for high-energy-density lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 27202–27209.

    CAS  Google Scholar 

  21. Yu, Y.; Li, S.; Fan, H. M.; Xu, H.; Jiang, M. W.; Huang, Y. H.; Li, J. Optimal annealing of Al foil anode for prelithiation and full-cell cycling in Li-ion battery: The role of grain boundaries in lithiation/delithiation ductility. Nano Energy 2020, 67, 104274.

    CAS  Google Scholar 

  22. Yue, X. Y.; Yao, Y. X.; Zhang, J.; Yang, S. Y.; Li, Z. H.; Yan, C.; Zhang, Q. Unblocked electron channels enable efficient contact prelithiation for lithium-ion batteries. Adv. Mater. 2022, 34, 2110337.

    CAS  Google Scholar 

  23. Zhang, X. X.; Qu, H. N.; Ji, W. X.; Zheng, D.; Ding, T. Y.; Abegglen, C.; Qiu, D. T.; Qu, D. Y. Fast and controllable prelithiation of hard carbon anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 11589–11599.

    CAS  Google Scholar 

  24. Park, K.; Yu, B. C.; Goodenough, J. B. Li3N as a cathode additive for high-energy-density lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1502534.

    Google Scholar 

  25. Sun, C. K.; Zhang, X.; Li, C.; Wang, K.; Sun, X. Z.; Ma, Y. W. High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance. Energy Storage Mater. 2020, 24, 160–166.

    Google Scholar 

  26. Sun, Y. M.; Li, Y. B.; Sun, J.; Li, Y. Z.; Pei, A.; Cui, Y. Stabilized Li3N for efficient battery cathode prelithiation. Energy Storage Mater. 2017, 6, 119–124.

    Google Scholar 

  27. Mao, E. Y.; Wang, W. Y.; Wan, M. T.; Wang, L.; He, X. M.; Sun, Y. M. Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode. Nano Res. 2020, 13, 1122–1126.

    CAS  Google Scholar 

  28. Zhan, Y. J.; Yu, H. L.; Ben, L. B.; Chen, Y. Y.; Huang, X. J. Using Li2S to compensate for the loss of active lithium in Li-ion batteries. Electrochim. Acta 2017, 255, 212–219.

    CAS  Google Scholar 

  29. Bie, Y. T.; Yang, J.; Wang, J. L.; Zhou, J. J.; Nuli, Y. N. Li2O2 as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries. Chem. Commun. 2017, 53, 8324–8327.

    CAS  Google Scholar 

  30. Abouimrane, A.; Cui, Y. J.; Chen, Z. H.; Belharouak, I.; Yahia, H. B.; Wu, H. M.; Assary, R.; Curtiss, L. A.; Amine, K. Enabling high energy density Li-ion batteries through Li2O activation. Nano Energy 2016, 27, 196–201.

    CAS  Google Scholar 

  31. Qiao, Y.; Yang, H. J.; Chang, Z.; Deng, H.; Li, X.; Zhou, H. S. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 2021, 6, 653–662.

    CAS  Google Scholar 

  32. Park, K. S.; Im, D.; Benayad, A.; Dylla, A.; Stevenson, K. J.; Goodenough, J. B. LiFeO2-incorporated Li2MoO3 as a cathode additive for lithium-ion battery safety. Chem. Mater. 2012, 24, 2673–2683.

    CAS  Google Scholar 

  33. Su, X.; Lin, C. K.; Wang, X. P.; Maroni, V. A.; Ren, Y.; Johnson, C. S.; Lu, W. Q. A new strategy to mitigate the initial capacity loss of lithium ion batteries. J. Power Sources 2016, 324, 150–157.

    CAS  Google Scholar 

  34. Park, M. S.; Lim, Y. G.; Park, J. W.; Kim, J. S.; Lee, J. W.; Kim, J. H.; Dou, S. X.; Kim, Y. J. Li2RuO3 as an additive for high-energy lithium-ion capacitors. J. Phys. Chem. C 2013, 117, 11471–11478.

    CAS  Google Scholar 

  35. Noh, M.; Cho, J. Role of Li6CoO4 cathode additive in Li-ion cells containing low Coulombic efficiency anode material. J. Electrochem. Soc. 2012, 159, A1329–A1334.

    CAS  Google Scholar 

  36. Shanmukaraj, D.; Grugeon, S.; Laruelle, S.; Douglade, G.; Tarascon, J. M.; Armand, M. Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries. Electrochem. Commun. 2010, 12, 1344–1347.

    CAS  Google Scholar 

  37. Solchenbach, S.; Wetjen, M.; Pritzl, D.; Schwenke, K. U.; Gasteiger, H. A. Lithium oxalate as capacity and cycle-life enhancer in LNMO/graphite and LNMO/SiG full cells. J. Electrochem. Soc. 2018, 165, A512–A524.

    CAS  Google Scholar 

  38. Shen, B. L.; Sarkodie, B.; Zhang, L.; Jiang, H.; Li, C. Z.; Hu, Y. J. Self-sacrificing lithium source with high electrochemical activity and water oxygen stability and its application in Si-C//S battery. Energy Storage Mater. 2022, 45, 687–695.

    Google Scholar 

  39. Chen, H. Y.; Armand, M.; Courty, M.; Jiang, M.; Grey, C. P.; Dolhem, F.; Tarascon, J. M.; Poizot, P. Lithium salt of tetrahydroxybenzoquinone: Toward the development of a sustainable Li-ion battery. J. Am. Chem. Soc. 2009, 131, 8984–8988.

    CAS  Google Scholar 

  40. Li, W. W.; Li, H. Q.; Lu, Z. J.; Gan, L.; Ke, L. B.; Zhai, T. Y.; Zhou, H. S. Layered phosphorus-like GeP5: A promising anode candidate with high initial Coulombic efficiency and large capacity for lithium ion batteries. Energy Environ. Sci. 2015, 8, 3629–3636.

    CAS  Google Scholar 

  41. Liu, W. R.; Guo, Z. Z.; Young, W. S.; Shieh, D. T.; Wu, H. C.; Yang, M. H.; Wu, N. L. Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive. J. Power Sources 2005, 140, 139–144.

    CAS  Google Scholar 

  42. Gu, W. L.; Hu, L. Y.; Shang, C. S.; Li, J.; Wang, E. K. Enhancement of the hydrogen evolution performance by finely tuning the morphology of Co-based catalyst without changing chemical composition. Nano Res. 2019, 12, 191–196.

    CAS  Google Scholar 

  43. Zhang, X. Y.; Yang, P. F.; Liu, Y. N.; Pan, J. H.; Li, D. Q.; Wang, B.; Feng, J. T. Support morphology effect on the selective oxidation of glycerol over AuPt/CeO2 catalysts. J. Catal. 2020, 385, 146–159.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support provided by the National Natural Science Foundation of China (No. 52072138), the National Key Research and Development Program of China (No. 2018YFE0206900), the Shenzhen Science and Technology Program (No. JCYJ20220530160816038) and the Australian Research Council (ARC) through the Discovery Project (No. DP180102297). The authors also acknowledge the technical support from the Analytical and Testing Center of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqiao Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Liang, J., Zhong, X. et al. Boosting the capability of Li2C2O4 as cathode pre-lithiation additive for lithium-ion batteries. Nano Res. 16, 3872–3878 (2023). https://doi.org/10.1007/s12274-022-5146-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5146-0

Keywords

Navigation