Skip to main content
Log in

Theory-driven designed TiO2@MoO2 heterojunction: Balanced crystallinity and nanostructure toward desirable kinetics and high-rate sodium-ion storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sodium-ion batteries (SIBs) are promising candidates for large-scale energy storage due to their cost effectiveness and the unlimited availability of sodium. However, there remains a need for the rational design of better anodic materials than are currently available, as these materials are critical for the sodium-ion storage process. In this work, theoretical calculations were performed to design a conceptually novel TiO2@MoO2 heterojunction (TMH) anode that was expected to exhibit better electrochemical performance than current anodes. The TMH anode was fabricated via a facile and cost—effective method, and the results of in-depth sodium-ion-storage performance and reaction kinetics analyses indicate that it exhibited an excellent rate capability and enhanced pseudocapacitive response, due to its high crystallinity. This electrochemical performance was superior to that of previously reported anodic materials, confirming the accuracy of the theoretical calculations. Destruction of TMH’s nanostructure at high temperatures resulted in a decrease in its electrochemical performance, indicating the key role played by the nanostructure in TMH’s ability to store sodium ions. This study demonstrates that integration of theoretical predictions with experimental investigations offers insights into how materials’ crystallinity and nanostructure affect their pseudocapacitive sodium-ion storage capabilities, which will help to guide the rational design of effective anodic materials for SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chiang, Y. M. Building a better battery: Controlling the charge-induced morphological changes of electrode materials may provide a route to improved battery performance. Science 2010, 330, 1485–1486.

    CAS  Google Scholar 

  2. Sun, Y. M.; Liu, N. A.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.

    CAS  Google Scholar 

  3. Zhou, H. S. New energy storage devices for post lithium-ion batteries. Energy Environ. Sci. 2013, 6, 2256.

    CAS  Google Scholar 

  4. Shen, X.; Liu, H.; Cheng, X. B.; Yan, C.; Huang, J. Q. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Mater. 2018, 12, 161–175.

    Google Scholar 

  5. Zhou, G. M.; Li, F.; Cheng, H. M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307–1338.

    CAS  Google Scholar 

  6. Lu, X. C.; Li, G. S.; Kim, J. Y.; Mei, D. H.; Lemmon, J. P.; Sprenkle, V. L.; Liu, J. Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage. Nat. Commun. 2014, 5, 4578.

    CAS  Google Scholar 

  7. Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.

    CAS  Google Scholar 

  8. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    CAS  Google Scholar 

  9. Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

    CAS  Google Scholar 

  10. Liang, Y. Z.; Song, N.; Zhang, Z. C. Y.; Chen, W. H.; Feng, J. K.; Xi, B. J.; Xiong, S. L. Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage. Adv. Mater. 2022, 34, 2202673.

    CAS  Google Scholar 

  11. Huang, M.; Chu, Y. T.; Xi, B. J.; Shi, N. X.; Duan, B.; Zhang, C. H.; Chen, W. H.; Feng, J. K.; Xiong, S. L. TiO2-based heterostructures with different mechanism: A general synergistic effect toward high-performance sodium storage. Small 2020, 16, 2004054.

    CAS  Google Scholar 

  12. Yang, F. H.; Hao, J. N.; Long, J.; Liu, S. L.; Zheng, T.; Lie, W.; Chen, J.; Guo, Z. P. Achieving high-performance metal phosphide anode for potassium ion batteries via concentrated electrolyte chemistry. Adv. Energy Mater. 2021, 11, 2003346.

    CAS  Google Scholar 

  13. Hao, J. N.; Zhang, J.; Xia, G. L.; Liu, Y. J.; Zheng, Y.; Zhang, W. C.; Tang, Y. B.; Pang, W. K.; Guo, Z. P. Heterostructure manipulation via in situ localized phase transformation for high-rate and highly durable lithium ion storage. ACS Nano 2018, 12, 10430–10438.

    CAS  Google Scholar 

  14. Zheng, Y.; Zhou, T. F.; Zhang, C. F.; Mao, J. F.; Liu, H. K.; Guo, Z. P. Boosted charge transfer in SnS/SnO2 heterostructures: Toward high rate capability for sodium-ion batteries. Angew. Chem. 2016, 128, 3469–3474.

    Google Scholar 

  15. Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.

    CAS  Google Scholar 

  16. Deng, C. J.; Lau, M. L.; Ma, C. R.; Skinner, P.; Liu, Y. Z.; Xu, W. Q.; Zhou, H.; Zhang, X. H.; Wu, D.; Yin, Y. D. et al. A mechanistic study of mesoporous TiO2 nanoparticle negative electrode materials with varying crystallinity for lithium ion batteries. J. Mater. Chem. A 2010, 8, 3333–3343.

    Google Scholar 

  17. Xu, X.; Chen, B.; Hu, J. P.; Sun, B. W.; Liang, X. H.; Li, N.; Yang, S. Y. A.; Zhang, H.; Huang, W.; Yu, T. Heterostructured TiO2 spheres with tunable interiors and shells toward improved packing density and pseudocapacitive sodium storage. Adv. Mater. 2019, 31, 1904589.

    CAS  Google Scholar 

  18. Xu, X.; Zhao, R. S.; Ai, W.; Chen, B.; Du, H. F.; Wu, L. S.; Zhang, H.; Huang, W.; Yu, T. Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: Toward fast sodium storage by tunable pseudocapacitance. Adv. Mater. 2018, 30, 1800658.

    Google Scholar 

  19. Chao, D. L.; Liang, P.; Chen, Z.; Bai, L. Y.; Shen, H.; Liu, X. X.; Xia, X. H.; Zhao, Y. L.; Savilov, S. V.; Lin, J. Y. et al. Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 2016, 10, 10211–10219.

    CAS  Google Scholar 

  20. Chao, D. L.; Zhu, C. R.; Yang, P. H.; Xia, X. H.; Liu, J. L.; Wang, J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J. et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 2016, 7, 12122.

    CAS  Google Scholar 

  21. Shen, L. F.; Wang, Y.; Lv, H. F.; Chen, S. Q.; van Aken, P. A.; Wu, X. J.; Maier, J.; Yu, Y. Ultrathin Ti2Nb2O9 nanosheets with pseudocapacitive properties as superior anode for sodium-ion batteries. Adv. Mater. 2018, 30, 1804378.

    Google Scholar 

  22. Xia, C.; Lin, Z. F.; Zhou, Y. G.; Zhao, C.; Liang, H. F.; Rozier, P.; Wang, Z. G.; Alshareef, H. N. Large intercalation pseudocapacitance in 2D VO2 (B): Breaking through the kinetic barrier. Adv. Mater. 2018, 30, 1803594.

    Google Scholar 

  23. Deng, Q. L.; Chen, F.; Liu, S.; Bayaguud, A.; Feng, Y. Z.; Zhang, Z. B.; Fu, Y. P.; Yu, Y.; Zhu, C. B. Advantageous functional integration of adsorption-intercalation-conversion hybrid mechanisms in 3D flexible Nb2O5@hard carbon@MoS2@soft carbon fiber paper anodes for ultrafast and super-stable sodium storage. Adv. Funct. Mater. 2020, 30, 1908665.

    CAS  Google Scholar 

  24. Liu, P. G.; Liu, W. F.; Huang, Y. P.; Li, P. L.; Yan, J.; Liu, K. Y. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage. Energy Storage Mater. 2020, 25, 858–865.

    CAS  Google Scholar 

  25. Jiang, J. X.; Yang, W. L.; Wang, H.; Zhao, Y.; Guo, J.; Zhao, J. Q.; Beidaghi, M.; Gao, L. J. Electrochemical performances of MoO2/C nanocomposite for sodium ion storage: An insight into rate dependent charge/discharge mechanism. Electrochim. Acta 2017, 240, 379–387.

    CAS  Google Scholar 

  26. Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.

    CAS  Google Scholar 

  27. Zhao, C. T.; Yu, C.; Zhang, M. D.; Huang, H. W.; Li, S. F.; Han, X. T.; Liu, Z. B.; Yang, J.; Xiao, W.; Liang, J. N. et al. Ultrafine MoO2-carbon microstructures enable ultralong-life power-type sodium ion storage by enhanced pseudocapacitance. Adv. Energy Mater. 2017, 7, 1602880.

    Google Scholar 

  28. Takami, N.; Satoh, A.; Hara, M.; Ohsaki, I. Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. J. Electrochem. Soc. 1995, 142, 371–379.

    CAS  Google Scholar 

  29. Zhou, M.; Xu, Y.; Xiang, J. X.; Wang, C. L.; Liang, L. Y.; Wen, L. Y.; Fang, Y. G.; Mi, Y.; Lei, Y. Understanding the orderliness of atomic arrangement toward enhanced sodium storage. Adv. Energy Mater. 2016, 6, 1600448.

    Google Scholar 

  30. Yang, X. M.; Wang, C.; Yang, Y. C.; Zhang, Y.; Jia, X. N.; Chen, J.; Ji, X. B. Anatase TiO2 nanocubes for fast and durable sodium ion battery anodes. J. Mater. Chem. A 2015, 3, 8800–8807.

    CAS  Google Scholar 

  31. Li, B. S.; Xi, B. J.; Feng, Z. Y.; Lin, Y.; Liu, J. C.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanoparticles for ultrafast sodium storage. Adv. Mater. 2018, 30, 1705788.

    Google Scholar 

  32. Zhang, Y.; Ding, Z. Y.; Foster, C. W.; Banks, C. E.; Qiu, X. Q.; Ji, X. B. Oxygen vacancies evoked blue TiO2(B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv. Funct. Mater. 2017, 27, 1700856.

    Google Scholar 

  33. Hwang, J. Y.; Du, H. L.; Yun, B. N.; Jeong, M. G.; Kim, J. S.; Kim, H.; Jung, H. G.; Sun, Y. K. Carbon-free TiO2 microspheres as anode materials for sodium ion batteries. ACS Energy Lett. 2019, 4, 494–501.

    CAS  Google Scholar 

  34. Chen, B.; Meng, Y. H.; Xie, F. X.; He, F.; He, C. N.; Davey, K.; Zhao, N. Q.; Qiao, S. Z. 1D sub-nanotubes with anatase/bronze TiO2 nanocrystal wall for high-rate and long-life sodium-ion batteries. Adv. Mater. 2018, 30, 1804116.

    Google Scholar 

  35. Zhang, Y.; Foster, C. W.; Banks, C. E.; Shao, L. D.; Hou, H. S.; Zou, G. Q.; Chen, J.; Huang, Z. D.; Ji, X. B. Graphene-rich wrapped petallike rutile TiO2 tuned by carbon dots for high-performance sodium Storage. Adv. Mater. 2016, 28, 9391–9399.

    CAS  Google Scholar 

  36. Cha, G.; Mohajernia, S.; Nguyen, N. T.; Mazare, A.; Denisov, N.; Hwang, I.; Schmuki, P. Li+ pre-insertion leads to formation of solid electrolyte interface on TiO2 nanotubes that enables high-performance anodes for sodium ion batteries. Adv. Energy Mater. 2020, 10, 1903448.

    CAS  Google Scholar 

  37. Li, Q. W.; Wang, H.; Tang, X. F.; Zhou, M.; Zhao, H. P.; Xu, Y.; Xiao, W.; Lei, Y. Electrical conductivity adjustment for interface capacitive-like storage in sodium-ion battery. Adv. Funct. Mater. 2021, 31, 2101081.

    CAS  Google Scholar 

  38. Li, B. S.; Xi, B. J.; Wu, F. F.; Mao, H. Z.; Liu, J.; Feng, J. K.; Xiong, S. L. One-step in situ formation of N-doped carbon nanosheet 3D porous networks/TiO2 hybrids with ultrafast sodium storage. Adv. Energy Mater. 2019, 9, 1803070.

    Google Scholar 

  39. Liu, Y.; Wang, S. C.; Sun, X.; Zhang, J. Y.; Zaman, F. U.; Hou, L. R.; Yuan, C. Z. Sub-nanoscale engineering of MoO2 clusters for enhanced sodium storage. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12263.

  40. Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.

    CAS  Google Scholar 

  41. Lindström, H.; Södergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S. E. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 1997, 101, 7717–7722.

    Google Scholar 

  42. Conway, B. E.; Birss, V.; Wojtowicz, J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 1997, 66, 1–14.

    CAS  Google Scholar 

  43. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

    CAS  Google Scholar 

  44. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

    CAS  Google Scholar 

  45. Chadi, D. J. Special points for Brillouin-zone integrations. Phys. Rev. B 1977, 16, 1746–1747.

    Google Scholar 

Download references

Acknowledgements

J. Y. Y. and P. Q. H. contributed equally to this work. This work was supported by State Key Laboratory of Electrical Insulation and Power Equipment (Nos. EIPE21309 and EIPE23308), the Young Talent Recruiting Plans of Xi’an Jiaotong University (No. DQ6J012), and Fundamental Research Funds for the Central Universities (Nos. xtr042021008 and xzy022022049). We appreciate the help from the Instrumental Analysis Center of Xi’an Jiaotong University in performing TEM and XPS. We acknowledge Xi’an Jiaotong University High-Performance Computing Center and Hefei Advanced Computing Center for providing the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Wu, Yonghong Cheng or Xin Xu.

Electronic Supplementary Material

12274_2022_5120_MOESM1_ESM.pdf

Theory-driven designed TiO2@MoO2 heterojunction: Balanced crystallinity and nanostructure toward desirable kinetics and high-rate sodium-ion storage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Hai, P., Gao, Y. et al. Theory-driven designed TiO2@MoO2 heterojunction: Balanced crystallinity and nanostructure toward desirable kinetics and high-rate sodium-ion storage. Nano Res. 16, 4941–4949 (2023). https://doi.org/10.1007/s12274-022-5120-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5120-x

Keywords

Navigation