Skip to main content
Log in

On the voltage sweep behavior of quantum dot light-emitting diode

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 28 September 2023

This article has been updated

Abstract

The origin of the efficiency drop of quantum dot light-emitting diode (QLED) under consecutive voltage sweeps is still a puzzle. In this work, we report the voltage sweep behavior of QLED. We observed the efficiency drop of red QLED with ZnMgO electron transport layer (ETL) under consecutive voltage sweeps. In contrast, the efficiency increases for ZnO ETL device. By analyzing the electrical characteristics of both devices and surface traps of ZnMgO and ZnO nanoparticles, we found the efficiency drop of ZnMgO device is related to the hole leakage mediated by trap state on ZnMgO nanoparticles. For ZnO device, the efficiency raise is due to suppressed electron leakage. The hole leakage also causes rapid lifetime degradation of ZnMgO device. However, the efficiency and lifetime degradation of ZnMgO device can be eliminated with shelf aging. Our work reveals the distinct voltage sweep behavior of QLED based on different ETLs and may help to understand the lifetime degradation mechanism in QLED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

    Article  CAS  Google Scholar 

  2. Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

    Article  CAS  Google Scholar 

  3. Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics 2022, 16, 505–511.

    Article  CAS  Google Scholar 

  4. Liu, D. Q.; Cao, S.; Wang, S. Y.; Wang, H. Q.; Dai, W.; Zou, B. S.; Zhao, J. L.; Wang, Y. J. Highly stable red quantum dot light-emitting diodes with long T95 operation lifetimes. J. Phys. Chem. Lett. 2020, 11, 3111–3115.

    Article  CAS  Google Scholar 

  5. Jia, S. Q.; Tang, H. D.; Ma, J. R.; Ding, S. H.; Qu, X. W.; Xu, B.; Wu, Z. H.; Li, G. Y.; Liu, P.; Wang, K. et al. High performance inkjet-printed quantum-dot light-emitting diodes with high operational stability. Adv. Opt. Mater. 2021, 9, 2101069.

    Article  CAS  Google Scholar 

  6. Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23.

    Article  CAS  Google Scholar 

  7. Shen, H. B.; Lin, Q. L.; Cao, W. R.; Yang, C. C.; Shewmon, N. T.; Wang, H. Z.; Niu, J. Z.; Li, L. S.; Xue, J. G. Efficient and long-lifetime full-color light-emitting diodes using high luminescence quantum yield thick-shell quantum dots. Nanoscale 2017, 9, 13583–13591.

    Article  CAS  Google Scholar 

  8. Chen, S.; Cao, W. R.; Liu, T. L.; Tsang, S. W.; Yang, Y. X.; Yan, X. L.; Qian, L. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 2019, 10, 765.

    Article  CAS  Google Scholar 

  9. Wang, F. F.; Hua, Q. Z.; Lin, Q. L.; Zhang, F. J.; Chen, F.; Zhang, H. M.; Zhu, X. X.; Xue, X. L.; Xu, X. P.; Shen, H. B. et al. High-performance blue quantum-dot light-emitting diodes by alleviating electron trapping. Adv. Opt. Mater. 2022, 10, 2200319.

    Article  CAS  Google Scholar 

  10. Chrzanowski, M.; Zatryb, G.; Sitarek, P.; Podhorodecki, A. Effect of air exposure of ZnMgO nanoparticle electron transport layer on efficiency of quantum-dot light-emitting diodes. ACS Appl. Mater. Interfaces 2021, 13, 20305–20312.

    Article  CAS  Google Scholar 

  11. Wang, L. X.; Tang, C. G.; Tan, Z. S.; Phua, H. Y.; Chen, J.; Lei, W.; Png, R. Q.; Chua, L. L.; Ho, P. K. H. Double-type-I charge-injection heterostructure for quantum-dot light-emitting diodes. Mater. Horiz. 2022, 9, 2147–2159.

    Article  CAS  Google Scholar 

  12. Kong, L. M.; Wu, J. L.; Li, Y. G.; Cao, F.; Wang, F. J.; Wu, Q. Q.; Shen, P. Y.; Zhang, C. X.; Luo, Y.; Wang, L. et al. Light-emitting field-effect transistors with EQE over 20% enabled by a dielectric-quantum dots-dielectric sandwich structure. Sci. Bull. 2022, 67, 529–536.

    Article  CAS  Google Scholar 

  13. Wu, Q. Q.; Gong, X. W.; Zhao, D. W.; Zhao, Y. B.; Cao, F.; Wang, H. R.; Wang, S.; Zhang, J. H.; Quintero-Bermudez, R.; Sargent, E. H. et al. Efficient tandem quantum-dot LEDs enabled by an inorganic semiconductor-metal-dielectric interconnecting layer stack. Adv. Mater. 2022, 34, 2108150.

    Article  CAS  Google Scholar 

  14. Wu, Q. Q.; Cao, F.; Wang, S.; Wang, Y. M.; Sun, Z. J.; Feng, J. W.; Liu, Y.; Wang, L.; Cao, Q.; Li, Y. G. et al. Quasi-shell-growth strategy achieves stable and efficient green InP quantum dot light-emitting diodes. Adv. Sci. 2022, 9, 2200959.

    Article  CAS  Google Scholar 

  15. Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608.

    Article  Google Scholar 

  16. Chen, D. S.; Chen, D.; Dai, X. L.; Zhang, Z. X.; Lin, J.; Deng, Y. Z.; Hao, Y. L.; Zhang, C.; Zhu, H. M.; Gao, F. et al. Shelf-stable quantum-dot light-emitting diodes with high operational performance. Adv. Mater. 2020, 32, 2006178.

    Article  Google Scholar 

  17. Chen, Z. N.; Su, Q.; Qin, Z. Y.; Chen, S. M. Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes. Nano Res. 2021, 14, 320–327.

    Article  CAS  Google Scholar 

  18. Peng, H.; Yu, A. R.; Liu, S. B.; He, Y.; Chen, X. Q.; Hu, Y. M.; Zeng, Q.; Qin, J. J.; Tang, Y. J.; Xuxie, H. N. et al. Coulomb effect induced intrinsic degradation in OLED. Org. Electron. 2019, 65, 370–374.

    Article  CAS  Google Scholar 

  19. Hu, C.; Wang, Q.; Bai, S.; Xu, M.; He, D. Y.; Lyu, D. Y.; Qi, J. The effect of oxygen vacancy on switching mechanism of ZnO resistive switching memory. Appl. Phys. Lett. 2017, 110, 073501.

    Article  Google Scholar 

  20. Chen, J. Y.; Hsin, C. L.; Huang, C. W.; Chiu, C. H.; Huang, Y. T.; Lin, S. J.; Wu, W. W.; Chen, L. J. Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 2013, 13, 3671–3677.

    Article  CAS  Google Scholar 

  21. Chang, W. Y.; Huang, H. W.; Wang, W. T.; Hou, C. H.; Chueh, Y. L.; He, J. H. High uniformity of resistive switching characteristics in a Cr/ZnO/Pt device. J. Electrochem. Soc. 2012, 159, G29–G32.

    Article  CAS  Google Scholar 

  22. Xu, N.; Liu, L. F.; Sun, X.; Liu, X. Y.; Han, D. D.; Wang, Y.; Han, R. Q.; Kang, J. F.; Yu, B. Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories. Appl. Phys. Lett. 2008, 92, 232112.

    Article  Google Scholar 

  23. Simanjuntak, F. M.; Ohno, T.; Samukawa, S. Neutral oxygen beam treated ZnO-based resistive switching memory device. ACS Appl. Electron. Mater. 2019, 1, 18–24.

    Article  CAS  Google Scholar 

  24. Lee, H.; Jeong, B. G.; Bae, W. K.; Lee, D. C.; Lim, J. Surface state-induced barrierless carrier injection in quantum dot electroluminescent devices. Nat. Commun. 2021, 12, 5669.

    Article  CAS  Google Scholar 

  25. Chang, J. H.; Park, P.; Jung, H.; Jeong, B. G.; Hahm, D.; Nagamine, G.; Ko, J.; Cho, J.; Padilha, L. A.; Lee, D. C. et al. Unraveling the origin of operational instability of quantum dot based light-emitting diodes. ACS Nano 2018, 12, 10231–10239.

    Article  CAS  Google Scholar 

  26. Lu, J. F.; Xu, C. X.; Dai, J.; Li, J. T.; Wang, Y. Y.; Lin, Y.; Li, P. L. Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles. Nanoscale 2015, 7, 3396–3403.

    Article  CAS  Google Scholar 

  27. Zhou, H.; Alves, H.; Hofmann, D. M.; Kriegseis, W.; Meyer, B. K.; Kaczmarczyk, G.; Hoffmann, A. Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure. Appl. Phys. Lett. 2002, 80, 210–212.

    Article  CAS  Google Scholar 

  28. Nair, S. V.; Sinha, S.; Rustagi, K. C. Quantum size effects in spherical semiconductor microcrystals. Phys. Rev. B 1987, 35, 4098–4101.

    Article  CAS  Google Scholar 

  29. Zhang, W. J.; Chen, X. T.; Ma, Y. H.; Xu, Z. W.; Wu, L. J.; Yang, Y. X.; Tsang, S. W.; Chen, S. Positive aging effect of ZnO nanoparticles induced by surface stabilization. J. Phys. Chem. Lett. 2020, 11, 5863–5870.

    Article  CAS  Google Scholar 

  30. Ding, S. H.; Wu, Z. H.; Qu, X. W.; Tang, H. D.; Wang, K.; Xu, B.; Sun, X. W. Impact of the resistive switching effects in ZnMgO electron transport layer on the aging characteristics of quantum dot light-emitting diodes. Appl. Phys. Lett. 2020, 117, 093501.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Key-Area Research and Development Program of Guangdong Province (Nos. 2019B010925001 and 2019B010924001), Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting (No. 2017KSYS007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Wei Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, X., Ma, J., Liu, P. et al. On the voltage sweep behavior of quantum dot light-emitting diode. Nano Res. 16, 5511–5516 (2023). https://doi.org/10.1007/s12274-022-5106-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5106-8

Keywords

Navigation