Skip to main content
Log in

Insights into the synergistic promotion of spin polarization over C3N5.4 for enhancing cooperative hydrogen evolution and benzylamine oxidation coupling

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Polymers are usually restricted on the high exciton binding energies and sluggish electron transfer because of the low dielectric constants. Regulating spin-polarized electrons is regarded as an attractive strategy, but often confined to the d-orbital elements. Here, the nonmetal P and N elements co-mediated the spin polarization of carbon nitrides (PCN) have been elaborately designed. The optimized PCN-3 shows an outstanding hydrogen production (22.2 mmol·g−1·h−1) coupled with selective benzylamine oxidation without using any solvent and cocatalysts, which is 200 times of original C3N4 and superior to the photocatalysts has been reported to date. Experimental and theoretical results verified that the spin-orbital coupling of N 2p and P 2p remarkably increased the parallel spin states of charge and reduced the formation of singlet excitons to accelerate exciton dissociation in carbon nitride. In addition, charge separation and surface catalysis can be significantly enhanced by the electron spin polarization of carbon nitride with the parallel arrangement, huge built-in electric field and disturbed electronic structure. Our finding deepens the insight into the charge separation and exciton dissociation in spin polarization, and offers new tactics to develop high-efficiency catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pang, J. B.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z. F.; Rummeli, M. H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72–133.

    CAS  Google Scholar 

  2. Kasap, H.; Godin, R.; Jeay-Bizot, C.; Achilleos, D. S.; Fang, X.; Durrant, J. R.; Reisner, E. Interfacial engineering of a carbon nitride-graphene oxide-molecular Ni catalyst hybrid for enhanced photocatalytic activity. ACS Catal. 2018, 8, 6914–6926.

    CAS  Google Scholar 

  3. Wang, X. Y.; Chen, L. J.; Chong, S. Y.; Little, M. A.; Wu, Y. Z.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 2018, 10, 1180–1189.

    CAS  Google Scholar 

  4. Li, G.; Deng, X. X.; Chen, P.; Wang, X. D.; Ma, J.; Liu, F.; Yin, S. F. Sulphur vacancies-VS2@C3N4 drived by in situ supramolecular self-assembly for synergistic photocatalytic degradation of real wastewater and H2 production: Vacancies taming interfacial compact heterojunction and carriers transfer. Chem. Eng. J. 2022, 433, 134505.

    CAS  Google Scholar 

  5. Wang, Q. C.; Deng, X. X.; Chen, W. G.; Chen, P.; Liu, F.; Yin, S. F. Bismuth complexes with N/S coordination based metallopolymer as highly efficient photocatalyst for selective oxidation of styrene. Fuel 2021, 302, 121127.

    CAS  Google Scholar 

  6. Huang, G. Q.; Ye, W. N.; Lv, C. X.; Butenko, D. S.; Yang, C.; Zhang, G. L.; Lu, P.; Xu, Y.; Zhang, S. C.; Wang, H. W. et al. Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production. J. Mater. Sci. Technol. 2022, 108, 18–25.

    CAS  Google Scholar 

  7. Yang, C.; Zhu, Y. K.; Liu, Y. M.; Wang, H. W.; Yang, D. J. Ternary red phosphorus/CoP2/SiO2 microsphere boosts visible-light-driven photocatalytic hydrogen evolution from pure water splitting. J. Mater. Sci. Technol. 2022, 125, 59–66.

    CAS  Google Scholar 

  8. Zhu, Y. K.; Lv, C. X.; Yin, Z. C.; Ren, J.; Yang, X. F.; Dong, C. L.; Liu, H. W.; Cai, R. S.; Huang, Y. C.; Theis, W. et al. A [001]-oriented hittorf’s phosphorus nanorods/polymeric carbon nitride heterostructure for boosting wide-spectrum-responsive photocatalytic hydrogen evolution from pure water. Angew. Chem., Int. Ed. 2020, 59, 868–873.

    CAS  Google Scholar 

  9. Hisatomi, T.; Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2019, 2, 387–399.

    CAS  Google Scholar 

  10. Wang, S. B.; Guan, B. Y.; Wang, X.; Lou, X. W. D. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 15145–15148.

    CAS  Google Scholar 

  11. Kasap, H.; Caputo, C. A.; Martindale, B. C. M.; Godin, R.; Lau, V. W. H.; Lotsch, B. V.; Durrant, J. R.; Reisner, E. Solar-driven reduction of aqueous protons coupled to selective alcohol oxidation with a carbon nitride-molecular Ni catalyst system. J. Am. Chem. Soc. 2016, 138, 9183–9192.

    CAS  Google Scholar 

  12. Han, G. Q.; Jin, Y. H.; Burgess, R. A.; Dickenson, N. E.; Cao, X. M.; Sun, Y. J. Visible-light-driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets. J. Am. Chem. Soc. 2017, 139, 15584–15587.

    CAS  Google Scholar 

  13. Su, F. Z.; Mathew, S. C.; Möhlmann, L.; Antonietti, M.; Wang, X. C.; Blechert, S. Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. Angew. Chem., Int. Ed. 2011, 50, 657–660.

    CAS  Google Scholar 

  14. Ray, S. C.; Pao, C. W.; Chiou, J. W.; Tsai, H. M.; Jan, J. C.; Pong, W. F.; McCann, R.; Roy, S. S.; Papakonstantinou, P.; McLaughlin, J. A. Electronic properties of a-CNx thin films: An X-ray-absorption and photoemission spectroscopy study. J. Appl. Phys. 2005, 98, 033708.

    Google Scholar 

  15. Meng, Q. Y.; Zhong, J. J.; Liu, Q.; Gao, X. W.; Zhang, H. H.; Lei, T.; Li, Z. J.; Feng, K.; Chen, B.; Tung, C. H. et al. A cascade cross-coupling hydrogen evolution reaction by visible light catalysis. J. Am. Chem. Soc. 2013, 135, 19052–19055.

    CAS  Google Scholar 

  16. Zhou, Z. X.; Zhang, Y. Y.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more. Chem. Soc. Rev. 2018, 47, 2298–2321.

    CAS  Google Scholar 

  17. Talapaneni, S. N.; Mane, G. P.; Park, D. H.; Lakhi, K. S.; Ramadass, K.; Joseph, S.; Skinner, W. M.; Ravon, U.; Al-Bahily, K.; Vinu, A. Diaminotetrazine based mesoporous C3N6 with a well-ordered 3D cubic structure and its excellent photocatalytic performance for hydrogen evolution. J. Mater. Chem. A 2017, 5, 18183–18192.

    CAS  Google Scholar 

  18. Kim, I. Y.; Kim, S.; Premkumar, S.; Yang, J. H.; Umapathy, S.; Vinu, A. Thermodynamically stable mesoporous C3N7 and C3N6 with ordered structure and their excellent performance for oxygen reduction reaction. Small 2020, 16, 1903572.

    CAS  Google Scholar 

  19. Yang, H.; Zhou, Q.; Fang, Z. Z.; Li, W.; Zheng, Y. J.; Ma, J.; Wang, Z.; Zhao, L. F.; Liu, S. Q.; Shen, Y. F. et al. Carbon nitride of five-membered rings with low optical bandgap for photoelectrochemical biosensing. Chem 2021, 7, 2708–2721.

    CAS  Google Scholar 

  20. Sathish, C.; Premkumar, S.; Chu, X. Z.; Yu, X. J.; Breese, M. B. H.; Al-Abri, M.; Al-Muhtaseb, A. H.; Karakoti, A.; Yi, J. B.; Vinu, A. Microporous carbon nitride (C3N5.4) with tetrazine based molecular structure for efficient adsorption of CO2 and water. Angew. Chem., Int. Ed. 2021, 60, 21242–21249.

    CAS  Google Scholar 

  21. Yang, H.; Wang, Z.; Liu, S. Q.; Shen, Y. F.; Zhang, Y. J. Molecular engineering of CxNy: Topologies, electronic structures and multidisciplinary applications. Chin. Chem. Lett. 2020, 31, 3047–3054.

    CAS  Google Scholar 

  22. Talapaneni, S. N.; Singh, G.; Kim, I. Y.; AlBahily, K.; Al-Muhtaseb, A. H.; Karakoti, A. S.; Tavakkoli, E.; Vinu, A. Nanostructured carbon nitrides for CO2 capture and conversion. Adv. Mater. 2020, 32, 1904635.

    CAS  Google Scholar 

  23. Peng, G. M.; Albero, J.; Garcia, H.; Shalom, M. A water-splitting carbon nitride photoelectrochemical cell with efficient charge separation and remarkably low onset potential. Angew. Chem., Int. Ed. 2018, 57, 15807–15811.

    CAS  Google Scholar 

  24. Ma, J.; Peng, X. X.; Zhou, Z. X.; Yang, H.; Wu, K. Q.; Fang, Z. Z.; Han, D.; Fang, Y. F.; Liu, S. Q.; Shen, Y. F. et al. Extended conjugation tuning carbon nitride for non-sacrificial H2O2 photosynthesis and hypoxic tumor therapy. Angew. Chem., Int. Ed., in press, DOI: https://doi.org/10.1002/anie.202210856.

  25. Kunitski, M.; Eicke, N.; Huber, P.; Köhler, J.; Zeller, S.; Voigtsberger, J.; Schlott, N.; Henrichs, K.; Sann, H.; Trinter, F. et al. Double-slit photoelectron interference in strong-field ionization of the neon dimer. Nat. Commun. 2019, 10, 1.

    CAS  Google Scholar 

  26. Wang, Y.; Xu, W.; Zhang, Y.; Wu, Y. Z.; Wang, Z. K.; Fu, L.; Bai, F. L.; Zhou, B. Y.; Wang, T. T.; Cheng, L. et al. Introducing spin polarization into atomically thin 2D carbon nitride sheets for greatly extended visible-light photocatalytic water splitting. Nano Energy 2021, 83, 105783.

    CAS  Google Scholar 

  27. Ou, B.; Wang, J. X.; Wu, Y.; Zhao, S.; Wang, Z. Efficient removal of Cr (VI) by magnetic and recyclable calcined CoFe-LDH/g-C3N4 via the synergy of adsorption and photocatalysis under visible light. Chem. Eng. J. 2020, 380, 122600.

    CAS  Google Scholar 

  28. Chen, X. H.; Lu, H. P.; Wang, K.; Zhai, Y. X.; Lunin, V.; Sercel, P. C.; Beard, M. C. Tuning spin-polarized lifetime in two-dimensional metal-halide perovskite through exciton binding energy. J. Am. Chem. Soc. 2021, 143, 19438–19445.

    CAS  Google Scholar 

  29. Li, Y. J.; Wang, H.; Zhang, X. D.; Wang, S. H.; Jin, S.; Xu, X. L.; Liu, W. X.; Zhao, Z.; Xie, Y. Exciton-mediated energy transfer in heterojunction enables infrared light photocatalysis. Angew. Chem., Int. Ed. 2021, 60, 12891–12896.

    CAS  Google Scholar 

  30. Fina, F.; Callear, S. K.; Carins, G. M.; Irvine, J. T. S. Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem. Mater. 2015, 27, 2612–2618.

    CAS  Google Scholar 

  31. Wang, H. Y.; Li, M. X.; Lu, Q. J.; Cen, Y. M.; Zhang, Y. Y.; Yao, S. Z. A mesoporous rod-like g-C3N5 synthesized by salt-guided strategy: As a superior photocatalyst for degradation of organic pollutant. ACS Sustainable Chem. Eng. 2019, 7, 625–631.

    CAS  Google Scholar 

  32. Talapaneni, S. N.; Mane, G. P.; Mano, A.; Anand, C.; Dhawale, D. S.; Mori, T.; Vinu, A. Synthesis of nitrogen-rich mesoporous carbon nitride with tunable pores, band gaps and nitrogen content from a single aminoguanidine precursor. ChemSusChem 2012, 5, 700–708.

    CAS  Google Scholar 

  33. Hu, S. Z.; Ma, L.; You, J. G.; Li, F. Y.; Fan, Z. P.; Lu, G.; Liu, D.; Gui, J. Z. Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus. Appl. Surf. Sci. 2014, 311, 164–171.

    CAS  Google Scholar 

  34. Aydemir, M.; Baysal, A.; Gümgüm, B. A modular design of metal catalysts for the transfer hydrogenation of aromatic ketones. Appl. Organometal. Chem. 2012, 26, 1–8.

    CAS  Google Scholar 

  35. Akaike, K.; Aoyama, K.; Dekubo, S.; Onishi, A.; Kanai, K. Characterizing electronic structure near the energy gap of graphitic carbon nitride based on rational interpretation of chemical analysis. Chem. Mater. 2018, 30, 2341–2352.

    CAS  Google Scholar 

  36. Titantah, J. T.; Lamoen, D. Carbon and nitrogen 1s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles. Diamond Relat. Mater. 2007, 16, 581–588.

    CAS  Google Scholar 

  37. Yang, S. L.; Wang, Q.; Wang, Q. C.; Li, G.; Zhao, T. X.; Chen, P.; Liu, F.; Yin, S. F. Linkage engineering mediated carriers transfer and surface reaction over carbon nitride for enhanced photocatalytic activity. J. Mater. Chem. A 2021, 9, 21732–21740.

    CAS  Google Scholar 

  38. Zhang, G.; Yang, F.; Liu, X. D.; Zhao, H. Y.; Che, S.; Li, J. Z.; Yan, X. R.; Sun, S. Y.; Chen, F. J.; Xu, C. et al. Tuning surface chemical property in hierarchical porous carbon via nitrogen and phosphorus doping for deep desulfurization. Sep. Purif. Technol. 2022, 280, 119923.

    CAS  Google Scholar 

  39. Kim, I. Y.; Kim, S.; Jin, X. Y.; Premkumar, S.; Chandra, G.; Lee, N. S.; Mane, G. P.; Hwang, S. J.; Umapathy, S.; Vinu, A. Ordered mesoporous C3N5 with a combined triazole and triazine framework and its graphene hybrids for the oxygen reduction reaction (ORR). Angew. Chem., Int. Ed. 2018, 57, 17135–17140.

    CAS  Google Scholar 

  40. Wang, S. J.; He, F. T.; Zhao, X. L.; Zhang, J. Q.; Ao, Z. M.; Wu, H.; Yin, Y.; Shi, L.; Xu, X. Y.; Zhao, C. C. et al. Phosphorous doped carbon nitride nanobelts for photodegradation of emerging contaminants and hydrogen evolution. Appl. Catal. B:Environ. 2019, 257, 117931.

    CAS  Google Scholar 

  41. Huang, J. X.; Li, D. G.; Li, R. B.; Zhang, Q. X.; Chen, T. S.; Liu, H. J.; Liu, Y.; Lv, W. Y.; Liu, G. G. An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics. Chem. Eng. J. 2019, 374, 242–253.

    CAS  Google Scholar 

  42. Zhang, Y. J.; Antonietti, M. Photocurrent generation by polymeric carbon nitride solids: An initial step towards a novel photovoltaic system. Chem. Asian J. 2010, 5, 1307–1311.

    CAS  Google Scholar 

  43. Zhou, Y. J.; Zhang, L. X.; Liu, J. J.; Fan, X. Q.; Wang, B. Z.; Wang, M.; Ren, W. C.; Wang, J.; Li, M. L.; Shi, J. L. Brand new P-doped g-C3N4: Enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light. J. Mater. Chem. A 2015, 3, 3862–3867.

    CAS  Google Scholar 

  44. Yang, S. L.; Deng, X. X.; Chen, P.; Zhao, T. X.; Liu, F.; Deng, C. Y.; Yin, S. F. Linker functionalized poly(heptazine imide) as charge channel and activation site for enhancing photocatalytic nitrogen fixation in pure water. Appl. Catal. B:Environ. 2022, 311, 121370.

    CAS  Google Scholar 

  45. Jun, Y. S.; Lee, E. Z.; Wang, X. C.; Hong, W. H.; Stucky, G. D.; Thomas, A. From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv. Funct. Mater. 2013, 23, 3661–3667.

    CAS  Google Scholar 

  46. Pan, H. Z.; Zhang, H. Y.; Liu, H. M.; Chen, L. Interstitial boron doping effects on the electronic and magnetic properties of graphitic carbon nitride materials. Solid State Commun. 2015, 203, 35–40.

    CAS  Google Scholar 

  47. Li, P. X.; Zhao, H.; Yan, X. Y.; Yang, X.; Li, J. J.; Gao, S. Y.; Cao, R. Visible-light-driven photocatalytic hydrogen production coupled with selective oxidation of benzyl alcohol over CdS@MoS2 heterostructures. Sci. China Mater. 2020, 63, 2239–2250.

    CAS  Google Scholar 

  48. Pan, L.; Ai, M. H.; Huang, C. Y.; Yin, L.; Liu, X.; Zhang, R. R.; Wang, S. B.; Jiang, Z.; Zhang, X. W.; Zou, J. J. et al. Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nat. Commun. 2020, 11, 418.

    CAS  Google Scholar 

  49. Bai, T.; Ai, J.; Liao, L. Y.; Luo, J. W.; Song, C.; Duan, Y. Y.; Han, L.; Che, S. N. Chiral mesostructured NiO films with spin polarisation. Angew. Chem., Int. Ed. 2021, 60, 9421–9426.

    CAS  Google Scholar 

  50. Marrows, C. H. Spin-polarised currents and magnetic domain walls. Adv. Phys. 2005, 54, 585–713.

    CAS  Google Scholar 

  51. Kirichenko, E. V.; Stephanovich, V. A. The influence of Coulomb interaction screening on the excitons in disordered two-dimensional insulators. Sci. Rep. 2021, 11, 11956.

    CAS  Google Scholar 

  52. Dinu, I. V.; Tolea, M.; Gartner, P. Quantum dot exciton dephasing by coulomb interaction: A fermionic analog of the independent boson model. Phys. Rev. B 2020, 101, 085304.

    CAS  Google Scholar 

  53. Gao, C. Y.; Xia, B. R.; Gao, D. Q.; Liu, Y. G. Structural distortion induced ferromagnetism in two-dimensional metal-free graphitic-C3N4 nanosheets. RSC. Adv. 2019, 9, 21391–21395.

    CAS  Google Scholar 

  54. Hsiao, Y. C.; Wu, T.; Li, M. X.; Hu, B. Magneto-optical studies on spin-dependent charge recombination and dissociation in perovskite solar cells. Adv. Mater. 2015, 27, 2899–2906.

    CAS  Google Scholar 

  55. Thilagam, A. Effect of the pauli exclusion principle on the singlet exciton yield in conjugated polymers. Appl. Phys. A 2016, 122, 254.

    Google Scholar 

  56. Köppen, T.; Franz, D.; Schramm, A.; Heyn, C.; Heitmann, D.; Kipp, T. Resonant Raman transitions into singlet and triplet states in InGaAs quantum dots containing two electrons. Phys. Rev. Lett. 2009, 103, 037402.

    Google Scholar 

  57. Yoo, M. S.; Lee, H. C.; Wolf, C.; Nguyen, N. N.; Park, D. H.; Kim, J.; Lee, E.; Chung, H. J.; Cho, K. Growth of multilayer graphene with a built-in vertical electric field. Chem. Mater. 2020, 32, 5142–5152.

    CAS  Google Scholar 

  58. Ben, H.; Yan, G. J.; Liu, H. Y.; Ling, C. C.; Fan, Y.; Zhang, X. J. Local spatial polarization induced efficient charge separation of squaraine-linked COF for enhanced photocatalytic performance. Adv. Funct. Mater. 2022, 32, 2104519.

    CAS  Google Scholar 

  59. Wei, J.; Xia, Y. G.; Qayum, A.; Jiao, X. L.; Chen, D. R.; Wang, T. Unexpected photoinduced room temperature magnetization in Bi2WO6 nanosheets. Small 2020, 16, 2005704.

    CAS  Google Scholar 

  60. Peng, S. M.; Yang, X.; Yang, Y.; Wang, S. J.; Zhou, Y.; Hu, J.; Li, Q.; He, J. L. Direct detection of local electric polarization in the interfacial region in ferroelectric polymer nanocomposites. Adv. Mater. 2019, 31, 1807722.

    Google Scholar 

  61. Ren, L. P.; Zhou, W.; Sun, B. J.; Li, H. Z.; Qiao, P. Z.; Xu, Y. C.; Wu, J. X.; Lin, K.; Fu, H. G. Defects-engineering of magnetic γ-Fe2O3 ultrathin nanosheets/mesoporous black TiO2 hollow sphere heterojunctions for efficient charge separation and the solar-driven photocatalytic mechanism of tetracycline degradation. Appl. Catal. B:Environ. 2019, 240, 319–328.

    CAS  Google Scholar 

  62. Liu, H.; Xu, C. Y.; Li, D. D.; Jiang, H. L. Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites. Angew. Chem., Int. Ed. 2018, 57, 5379–5383.

    CAS  Google Scholar 

  63. She, P.; Qin, J. S.; Sheng, J. Y.; Qi, Y. Y.; Rui, H. B.; Zhang, W.; Ge, X.; Lu, G. Y.; Song, X. W.; Rao, H. Dual-functional photocatalysis for cooperative hydrogen evolution and benzylamine oxidation coupling over sandwiched-like Pd@TiO2@ZnIn2S4 nanobox. Small 2022, 18, 2105114.

    CAS  Google Scholar 

  64. He, B.; Zhang, S. K.; Zhang, Y. Y.; Li, G. P.; Zhang, B. J.; Ma, W. Q.; Rao, B.; Song, R. T.; Zhang, L.; Zhang, Y. F. et al. Ortho-terphenylene viologens with through-space conjugation for enhanced photocatalytic oxidative coupling and hydrogen evolution. J. Am. Chem. Soc. 2022, 144, 4422–4430.

    CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by Guizhou Provincial Science and Technology Foundation (No. ZK2021069), Young Science and Technology Talents Development Project of Education Department in Guizhou Province (No. KY2022144) and National Natural Science Foundation of China (No. 22268015). The authors would like to thank Shiyanjia Lab (www.shiyanjia.com) for materials characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Chen or Shuang-Feng Yin.

Electronic Supplementary Material

12274_2022_5105_MOESM1_ESM.pdf

Insights into the synergistic promotion of spin polarization over C3N5.4 for enhancing cooperative hydrogen evolution and benzylamine oxidation coupling

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Deng, X., Pen, H. et al. Insights into the synergistic promotion of spin polarization over C3N5.4 for enhancing cooperative hydrogen evolution and benzylamine oxidation coupling. Nano Res. 16, 4225–4232 (2023). https://doi.org/10.1007/s12274-022-5105-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5105-9

Keywords

Navigation