Skip to main content
Log in

Construction of highly dispersed Pt single sites and high-efficiency-heterocatalysis silylation of alcohols with silanes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The construction of silicon-oxygen bonds has been highlighted as an exciting achievement in organosilicon and green chemistry, but their synthetic efficiency has great improvement potential, so it is crucial to explore and achieve an effective approach for synthesizing such compounds. In this study, we successfully prepared the highly dispersed platinum single-atom catalyst (Pt SAC/N-C) through a coordination-assisted strategy with a mixture of ligands (H2bpdc and H2bpydc), which were used for the O-silylation of alcohols with silanes. The strong coordination between Pt2+ and the Pyridine N at the skeleton of UiO-67 plays a critical role in accessing the atomically isolated dispersion of Pt sites. Without the assistance of the H2bpydc ligands, the Pt/ UiO-67-bpdc precursor is prone to aggregation during the pyrolysis process, resulting in the formation of Pt nanoparticles. Aided by advanced characterization techniques of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure (XAFS) spectroscopy, it has been demonstrated that atomically dispersed Pt was formed on the UiO-67 through a local structure of four-coordinated Pt-N4, exhibiting a high actual Pt loading content (0.6962 wt.%). In the oxidation of silanes, the Pt SAC/N-C catalyst showed a high turnover frequency (TOF) value (up to 9,920 h−1) when the catalyst loading decreased to 0.005%. Excellent performance was maintained during recycling experiments, indicating high stability of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan, H.; Su, C. L.; He, J.; Chen, W. Single-atom catalysts and their applications in organic chemistry. J. Mater. Chem. A 2018, 6, 8793–8814.

    CAS  Google Scholar 

  2. Lai, W. H.; Zhang, L. F.; Yan, Z. C.; Hua, W. B.; Indris, S.; Lei, Y. J.; Liu, H. W.; Wang, Y. X.; Hu, Z. P.; Liu, H. K. et al. Activating inert surface Pt single atoms via subsurface doping for oxygen reduction reaction. Nano Lett. 2021, 21, 7970–7978.

    CAS  Google Scholar 

  3. Parrott, M. C.; Luft, J. C.; Byrne, J. D.; Fain, J. H.; Napier, M. E.; DeSimone, J. M. Tunable bifunctional silyl ether cross-linkers for the design of acid-sensitive biomaterials. J. Am. Chem. Soc. 2010, 132, 17928–17932.

    CAS  Google Scholar 

  4. Teimuri-Mofrad, R.; Abbasi, H.; Safa, K. D.; Tahmasebi, B. Synthesis of novel bis[(tris(dimethylsilyl)methyl)alkyl]ferrocene derivatives as new ferrocenyl multi-functional silyl ether compounds. ARKIVOC 2016, 4, 371–384.

    Google Scholar 

  5. Chen, L.; Yu, L.; Deng, Y.; Zheng, Z. J.; Xu, Z.; Cao, J.; Xu, L. W. C-H functionalization/C-O bond cleavage of benzyl silyl ethers with ynamides for the chemoselective synthesis of skeletally diverse compounds. Adv. Synth. Catal. 2016, 358, 480–485.

    CAS  Google Scholar 

  6. Mir, R.; Dudding, T. Phase-transfer catalyzed O-silyl ether deprotection mediated by a cyclopropenium cation. J. Org. Chem. 2017, 82, 709–714.

    CAS  Google Scholar 

  7. Hayashi, Y.; Itoh, T.; Ohkubo, M.; Ishikawa, H. Asymmetric michael reaction of acetaldehyde catalyzed by diphenylprolinol silyl ether. Angew. Chem., Int. Ed. 2008, 47, 4722–4724.

    CAS  Google Scholar 

  8. Field, L. D.; Messerle, B. A.; Rehr, M.; Soler, L. P.; Hambley, T. W. Cationic iridium(I) complexes as catalysts for the alcoholysis of silanes. Organometallics 2003, 22, 2387–2395.

    CAS  Google Scholar 

  9. Chung, M. K.; Orlova, G.; Goddard, J. D.; Schlaf, M.; Harris, R.; Beveridge, T. J.; White, G.; Hallett, F. R. Regioselective silylation of sugars through palladium nanoparticle-catalyzed silane alcoholysis. J. Am. Chem. Soc. 2002, 124, 10508–10518.

    CAS  Google Scholar 

  10. Wang, X.; Li, P.; Li, Z. J.; Chen, W. X.; Zhou, H.; Zhao, Y. F.; Wang, X. Q.; Zheng, L. R.; Dong, J. C.; Lin, Y. et al. 2D MOF induced accessible and exclusive Co single sites for an efficient O-silylation of alcohols with silanes. Chem. Commun. 2019, 55, 6563–6566.

    CAS  Google Scholar 

  11. Sridhar, M.; Raveendra, J.; China Ramanaiah, B.; Narsaiah, C. An efficient synthesis of silyl ethers of primary alcohols, secondary alcohols, phenols and oximes with a hydrosilane using InBr3 as a catalyst. Tetrahedron Lett. 2011, 52, 5980–5982.

    CAS  Google Scholar 

  12. Raffa, P.; Evangelisti, C.; Vitulli, G.; Salvadori, P. First examples of gold nanoparticles catalyzed silane alcoholysis and silylative pinacol coupling of carbonyl compounds. Tetrahedron Lett. 2008, 49, 3221–3224.

    CAS  Google Scholar 

  13. Kim, S.; Kwon, M. S.; Park, J. Silylation of primary alcohols with recyclable ruthenium catalyst and hydrosilanes. Tetrahedron Lett. 2010, 51, 4573–4575.

    CAS  Google Scholar 

  14. Biffis, A.; Braga, M.; Basato, M. Solventless silane alcoholysis catalyzed by recoverable dirhodium(II) perfluorocarboxylates. Adv. Synth. Catal. 2004, 346, 451–458.

    CAS  Google Scholar 

  15. Hara, K.; Akiyama, R.; Takakusagi, S.; Uosaki, K.; Yoshino, T.; Kagi, H.; Sawamura, M. Self-assembled monolayers of compact phosphanes with alkanethiolate pendant groups: Remarkable reusability and substrate selectivity in Rh catalysis. Angew. Chem. 2008, 120, 5709–5712.

    Google Scholar 

  16. Marciniec, B. Catalysis by transition metal complexes of alkene silylation-recent progress and mechanistic implications. Coord. Chem. Rev. 2005, 249, 2374–2390.

    CAS  Google Scholar 

  17. Lewis, L. N.; Stein, J.; Gao, Y.; Colborn, R. E.; Hutchins, G. Platinum catalysts used in the silicones industry: Their synthesis and activity in hydrosilylation. Platinum Met. Rev. 1997, 41, 66–75.

    CAS  Google Scholar 

  18. Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Iron catalysts for selective anti-markovnikov alkene hydrosilylation using tertiary silanes. Science 2012, 335, 567–570.

    CAS  Google Scholar 

  19. Dong, P. Y.; Wang, Y.; Zhang, A.; Cheng, T.; Xi, X. G.; Zhang, J. L. Platinum single atoms anchored on a covalent organic framework: Boosting active sites for photocatalytic hydrogen evolution. ACS Catal. 2021, 11, 13266–13279.

    CAS  Google Scholar 

  20. Thomas, J. M.; Raja, R.; Lewis, D. W. Single-site heterogeneous catalysts. Angew. Chem., Int. Ed. 2005, 44, 6456–6482.

    CAS  Google Scholar 

  21. Hutchings, G. J. Heterogeneous catalysts—Discovery and design. J. Mater. Chem. 2009, 19, 1222–1235.

    CAS  Google Scholar 

  22. Weckhuysen, B. M. Preface: Recent advances in the in-situ characterization of heterogeneous catalysts. Chem. Soc. Rev. 2010, 39, 4557–4559.

    CAS  Google Scholar 

  23. Yin, X. P.; Wang, H. J.; Tang, S. F.; Lu, X. L.; Shu, M.; Si, R.; Lu, T. B. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 9382–9386.

    CAS  Google Scholar 

  24. Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

    CAS  Google Scholar 

  25. Jiao, L.; Jiang, H. L. Metal-organic-framework-based single-atom catalysts for energy applications. Chem 2019, 5, 786–804.

    CAS  Google Scholar 

  26. Zhang, H. B.; Lu, X. F.; Wu, Z. P.; Lou, X. W. D. Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 2020, 6, 1288–1301.

    CAS  Google Scholar 

  27. Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

    CAS  Google Scholar 

  28. Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

    CAS  Google Scholar 

  29. Zhao, Y. F.; Zhou, H.; Zhu, X. R.; Qu, Y. T.; Xiong, C.; Xue, Z. G.; Zhang, Q. W.; Liu, X. K.; Zhou, F. Y.; Mou, X. M. et al. Simultaneous oxidative and reductive reactions in one system by atomic design. Nat. Catal. 2021, 4, 134–143.

    CAS  Google Scholar 

  30. Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

    CAS  Google Scholar 

  31. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    CAS  Google Scholar 

  32. Chen, Z. P.; Vorobyeva, E.; Mitchell, S.; Fako, E.; Ortuño, M. A.; López, N.; Collins, S. M.; Midgley, P. A.; Richard, S.; Vilé, G. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 2018, 13, 702–707.

    CAS  Google Scholar 

  33. Chen, F.; Jiang, X. Z.; Zhang, L. L.; Lang, R.; Qiao, B. T. Single-atom catalysis: Bridging the homo- and heterogeneous catalysis. Chin. J. Catal. 2018, 39, 893–898.

    CAS  Google Scholar 

  34. Gawande, M. B.; Fornasiero, P.; Zbofil, R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020, 10, 2231–2259.

    CAS  Google Scholar 

  35. Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Best practices for the synthesis, activation, and characterization of metal-organic frameworks. Chem. Mater. 2017, 29, 26–39.

    CAS  Google Scholar 

  36. Chen, Y. Z.; Zhang, R.; Jiao, L.; Jiang, H. L. Metal-organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 2018, 362, 1–23.

    CAS  Google Scholar 

  37. Zhu, B. J.; Xia, D. G.; Zou, R. Q. Metal-organic frameworks and their derivatives as bifunctional electrocatalysts. Coord. Chem. Rev. 2018, 376, 430–448.

    CAS  Google Scholar 

  38. Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S. H.; Jiang, H. L. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 8525–8529.

    CAS  Google Scholar 

  39. Song, Z. X.; Zhang, L.; Doyle-Davis, K.; Fu, X. Z.; Luo, J. L.; Sun, X. L. Recent advances in MOF-derived single atom catalysts for electrochemical applications. Adv. Energy Mater. 2020, 10, 2001561.

    CAS  Google Scholar 

  40. Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511.

    CAS  Google Scholar 

  41. Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.

    CAS  Google Scholar 

  42. Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.

    Google Scholar 

  43. Fei, H. H.; Cohen, S. M. A robust, catalytic metal-organic framework with open 2,2’-bipyridine sites. Chem. Commun. 2014, 50, 4810–4812.

    CAS  Google Scholar 

  44. Øien, S.; Agostini, G.; Svelle, S.; Borfecchia, E.; Lomachenko, K. A.; Mino, L.; Gallo, E.; Bordiga, S.; Olsbye, U.; Lillerud, K. P.; Lamberti, C. Probing reactive platinum sites in UiO-67 zirconium metal-organic frameworks. Chem. Mater. 2015, 27, 1042–1056.

    Google Scholar 

  45. Toyao, T.; Miyahara, K.; Fujiwaki, M.; Kim, T. H.; Dohshi, S.; Horiuchi, Y.; Matsuoka, M. Immobilization of Cu complex into Zr-based MOF with bipyridine units for heterogeneous selective oxidation. J. Phys. Chem. C 2015, 119, 8131–8137.

    CAS  Google Scholar 

  46. Dubed Bandomo, G. C.; Mondal, S. S.; Franco, F.; Bucci, A.; Martin-Diaconescu, V.; Ortuño, M. A.; van Langevelde, P. H.; Shafir, A.; López, N.; Lloret-Fillol, J. Mechanically constrained catalytic Mn(CO)3Br single sites in a two-dimensional covalent organic framework for CO2 electroreduction in H2O. ACS Catal. 2021, 11, 7210–7222.

    CAS  Google Scholar 

  47. Wu, X.; Zhang, H. B.; Dong, J. C.; Qiu, M.; Kong, J. T.; Zhang, Y. F.; Li, Y.; Xu, G. L.; Zhang, J.; Ye, J. H. Surface step decoration of isolated atom as electron pumping: Atomic-level insights into visible-light hydrogen evolution. Nano Energy 2018, 45, 109–117.

    CAS  Google Scholar 

  48. Li, C.; Chen, Z.; Yi, H.; Cao, Y.; Du, L.; Hu, Y. D.; Kong, F. P.; Kramer Campen, R.; Gao, Y. Z.; Du, C. Y. et al. Polyvinylpyrrolidone-coordinated single-site platinum catalyst exhibits high activity for hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 15902–15907.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22075122 and 21971152), the Natural Science Foundation of Shandong Province (Nos. ZR2019BB038, ZR2020QB170, and ZR2020MB003). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunqiang Sun, Qingyun Liu or Xiuwen Zheng.

Electronic supplementary material

12274_2022_5097_MOESM1_ESM.pdf

Construction of highly dispersed Pt single sites and high-efficiency-heterocatalysis silylation of alcohols with silanes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Q., Sun, Y., Wang, S. et al. Construction of highly dispersed Pt single sites and high-efficiency-heterocatalysis silylation of alcohols with silanes. Nano Res. 16, 4643–4649 (2023). https://doi.org/10.1007/s12274-022-5097-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5097-5

Keywords

Navigation