Skip to main content
Log in

Constructing hierarchical nanosheet-on-microwire FeCo LDH@Co3O4 arrays for high-rate water oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Alkaline electrochemical water oxidation powered by renewable energies is a promising and environmentally friendly way to produce hydrogen. The industrial water electrolyzers are commonly operated at a high current density, calling for abundant and durable active sites to participate in. The rational design of hierarchically structured electrocatalysts is thus essential to industrial water electrolyzers. Herein, we develop a Fe3+ induced nanosizing strategy for fabricating such a hierarchical FeCo LDH@Co3O4 (LDH: layered double hydroxide) nanostructure array for high-rate water oxidation. Density functional theory (DFT) simulations indicate that the introduction of Fe3+ with a small ion radius and high electrical repulsion in the LDH layer distorted the LDH layer, resulting in a reduced nanosheet size and enabling the formation of a hierarchical structure. Such structure cannot be achieved without the participation of Fe3+ cations. Benefiting from the significantly enhanced electrochemical surface areas and charge/mass transport due to the hierarchical structure together with the boosted intrinsic activity by electronic modulation of Fe3+, such FeCo LDH@Co3O4 electrode can deliver an industrial-level current density of 1,000 mA·cm−2 at a small overpotential of 392 mV for water oxidation. When assembled in a water electrolyzer, it delivers a current density of 100 mA·cm−2 at a low operation voltage of 1.61 V. Powered by solar light, the electrolyzer demonstrates high solar-to-hydrogen efficiency of 18.15% with stable and reproducible photoresponse. These results provide new insights for constructing hierarchical nanostructures for advanced water oxidation and other diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lagadec, M. F.; Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 2020, 19, 1140–1150.

    Article  CAS  Google Scholar 

  2. Logan, B. E.; Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 2012, 488, 313–319.

    Article  CAS  Google Scholar 

  3. Zhao, L.; Zhang, Y.; Zhao, Z. L.; Zhang, Q. H.; Huang, L. B.; Gu, L.; Lu, G.; Hu, J. S.; Wan, L. J. Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces. Natl. Sci. Rev. 2020, 7, 27–36.

    Article  CAS  Google Scholar 

  4. Li, J. H.; Wang, L. J.; He, H. J.; Chen, Y. Q.; Gao, Z. R.; Ma, N.; Wang, B.; Zheng, L. L.; Li, R. L.; Wei, Y. J. et al. Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction. Nano Res. 2022, 15, 4986–4995.

    Article  Google Scholar 

  5. Zhu, Y. P.; Guo, C. X.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 2017, 50, 915–923.

    Article  CAS  Google Scholar 

  6. Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

    Article  CAS  Google Scholar 

  7. Che, Z. W.; Lu, X. Y.; Cai, B. F.; Xu, X. X.; Bao, J. C.; Liu, Y. Ligand-controlled synthesis of high density and ultra-small Ru nanoparticles with excellent electrocatalytic hydrogen evolution performance. Nano Res. 2022, 15, 1269–1275.

    Article  CAS  Google Scholar 

  8. Rausch, B.; Symes, M. D.; Chisholm, G.; Cronin, L. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 2014, 345, 1326–1330.

    Article  CAS  Google Scholar 

  9. Tang, T.; Jiang, W. J.; Niu, S.; Liu, N.; Luo, H.; Chen, Y. Y.; Jin, S. F.; Gao, F.; Wan, L. J.; Hu, J. S. Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. J. Am. Chem. Soc. 2017, 139, 8320–8328.

    Article  CAS  Google Scholar 

  10. Wang, T. H.; Tao, L.; Zhu, X. R.; Chen, C.; Chen, W.; Du, S. Q.; Zhou, Y. Y.; Zhou, B.; Wang, D. D.; Xie, C. et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 2022, 5, 66–73.

    Article  CAS  Google Scholar 

  11. Zhang, Q.; Chen, H.; Yang, L.; Liang, X.; Shi, L.; Feng, Q.; Zou, Y. C.; Li, G. D.; Zou, X. X. Non-catalytic, instant iridium(Ir) leaching: A non-negligible aspect in identifying Ir-based perovskite oxygen-evolving electrocatalysts. Chin. J. Catal. 2022, 43, 885–893.

    Article  CAS  Google Scholar 

  12. Yang, L.; Zhang, K. X.; Chen, H.; Shi, L.; Liang, X.; Wang, X. Y.; Liu, Y. P.; Feng, Q.; Liu, M. J.; Zou, X. X. An ultrathin two-dimensional iridium-based perovskite oxide electrocatalyst with highly efficient {001} facets for acidic water oxidation. J. Energy Chem. 2022, 66, 619–627.

    Article  CAS  Google Scholar 

  13. Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal—organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

    Article  CAS  Google Scholar 

  14. Jiang, W. J.; Tang, T.; Zhang, Y.; Hu, J. S. Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting. Acc. Chem. Res. 2020, 53, 1111–1123.

    Article  CAS  Google Scholar 

  15. Yuan, L. P.; Wu, Z. Y.; Jiang, W. J.; Tang, T.; Niu, S.; Hu, J. S. Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia. Nano Res. 2020, 13, 1376–1382.

    Article  CAS  Google Scholar 

  16. Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

    Article  CAS  Google Scholar 

  17. Yan, Y.; Liu, C. Y.; Jian, H. W.; Cheng, X.; Hu, T.; Wang, D.; Shang, L.; Chen, G.; Schaaf, P.; Wang, X. Y. et al. Substitutionally dispersed high-oxidation CoOx clusters in the lattice of rutile TiO2 triggering efficient Co-Ti cooperative catalytic centers for oxygen evolution reactions. Adv. Funct. Mater. 2021, 31, 2009610.

    Article  CAS  Google Scholar 

  18. Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.

    Article  CAS  Google Scholar 

  19. Niu, S.; Jiang, W. J.; Tang, T.; Yuan, L. P.; Luo, H.; Hu, J. S. Autogenous growth of hierarchical NiFe(OH)x/FeS nanosheet-on-microsheet arrays for synergistically enhanced high-output water oxidation. Adv. Funct. Mater. 2019, 29, 1902180.

    Article  Google Scholar 

  20. Luo, Y. T.; Zhang, Z. Y.; Chhowalla, M.; Liu, B. L. Recent advances in design of electrocatalysts for high-current-density water splitting. Adv. Mater. 2022, 34, 2108133.

    Article  CAS  Google Scholar 

  21. Cai, Z.; Zhou, D. J.; Wang, M. Y.; Bak, S. M.; Wu, Y. S.; Wu, Z. S.; Tian, Y.; Xiong, X. Y.; Li, Y. P.; Liu, W. et al. Introducing Fe2+ into nickel-iron layered double hydroxide: Local structure modulated water oxidation activity. Angew. Chem., Int. Ed. 2018, 57, 9392–9396.

    Article  CAS  Google Scholar 

  22. Li, H. Y.; Chen, S. M.; Zhang, Y.; Zhang, Q. H.; Jia, X. F.; Zhang, Q.; Gu, L.; Sun, X. M.; Song, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.

    Article  Google Scholar 

  23. Pham, C. V.; Escalera-López, D.; Mayrhofer, K.; Cherevko, S.; Thiele, S. Essentials of high performance water electrolyzers-from catalyst layer materials to electrode engineering. Adv. Energy Mater. 2021, 11, 2101998.

    Article  CAS  Google Scholar 

  24. Park, S.; Shao, Y. Y.; Liu, J.; Wang, Y. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: Status and perspective. Energy Environ. Sci. 2012, 5, 9331–9344.

    Article  CAS  Google Scholar 

  25. Liu, Y. P.; Liang, X.; Gu, L.; Zhang, Y.; Li, G. D.; Zou, X. X.; Chen, J. S. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6,000 hours. Nat. Commun. 2018, 9, 2609.

    Article  Google Scholar 

  26. Niu, S.; Jiang, W. J.; Wei, Z. X.; Tang, T.; Ma, J. M.; Hu, J. S.; Wan, L. J. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 2019, 141, 7005–7013.

    Article  CAS  Google Scholar 

  27. Xiao, C. L.; Li, Y. B.; Lu, X. Y.; Zhao, C. Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. Adv. Funct. Mater. 2016, 26, 3515–3523.

    Article  CAS  Google Scholar 

  28. Dong, X. W.; Zhang, Y. Q.; Song, M. L.; Tao, S. S.; Wang, H. F.; Zhou, P.; Wang, D. D.; Wu, Y. J.; Chen, C. M.; Su, C. L. et al. Colloid self-assembly of c-axis oriented hydroxide thin films to boost the electrocatalytic oxidation reaction. Chem. Eng. J. 2021, 420, 130532.

    Article  CAS  Google Scholar 

  29. Liu, X. Z.; Tang, T.; Jiang, W. J.; Zhang, Q. H.; Gu, L.; Hu, J. S. Fe-doped Co3O4 polycrystalline nanosheets as a binder-free bifunctional cathode for robust and efficient zinc-air batteries. Chem. Commun. 2020, 56, 5374–5377.

    Article  CAS  Google Scholar 

  30. Wu, J.; Ren, Z. Y.; Du, S. C.; Kong, L. J.; Liu, B. W.; Xi, W.; Zhu, J. Q.; Fu, H. G. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res. 2016, 9, 713–725.

    Article  CAS  Google Scholar 

  31. Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

    Article  CAS  Google Scholar 

  32. Qian, L.; Lu, Z. Y.; Xu, T. H.; Wu, X. C.; Tian, Y.; Li, Y. P.; Huo, Z. Y.; Sun, X. M.; Duan, X. Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis. Adv. Energy Mater. 2015, 5, 1500245.

    Article  Google Scholar 

  33. Yin, P. Q.; Wu, G.; Wang, X. Q.; Liu, S. J.; Zhou, F. Y.; Dai, L.; Wang, X.; Yang, B.; Yu, Z. Q. NiCo-LDH nanosheets strongly coupled with GO-CNTs as a hybrid electrocatalyst for oxygen evolution reaction. Nano Res. 2021, 14, 4783–4788.

    Article  CAS  Google Scholar 

  34. Jia, X. D.; Zhang, X.; Zhao, J. Q.; Zhao, Y. F.; Zhao, Y. X.; Waterhouse, G. I. N.; Shi, R.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Ultrafine monolayer Co-containing layered double hydroxide nanosheets for water oxidation. J. Energy Chem. 2019, 34, 57–63.

    Article  Google Scholar 

  35. Zhang, X.; Zhao, Y. F.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Zhang, T. R. A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv. Energy Mater. 2019, 9, 1900881.

    Article  Google Scholar 

  36. Chen, W.; Wang, Y. Y.; Wu, B. B.; Shi, J. Q.; Li, Y. Y.; Xu, L. T.; Xie, C.; Zhou, W.; Huang, Y. C.; Wang, T. H. et al. Activated Ni-OH bonds in a catalyst facilitates the nucleophile oxidation reaction. Adv. Mater. 2022, 34, 2105320.

    Article  CAS  Google Scholar 

  37. Li, R. Q.; Liu, Y. Q.; Li, H. B.; Zhang, M.; Lu, Y. R.; Zhang, L.; Xiao, J. P.; Boehm, F.; Yan, K. One-step synthesis of NiMn-layered double hydroxide nanosheets efficient for water oxidation. Small Methods 2019, 3, 1800344.

    Article  CAS  Google Scholar 

  38. Kang, Y.; Wang, S.; Hui, K. S.; Wu, S. X.; Dinh, D. A.; Fan, X.; Bin, F.; Chen, F. M.; Geng, J. X.; Cheong, W. C. M. et al. Surface reconstruction establishing mott-schottky heterojunction and built-in space-charging effect accelerating oxygen evolution reaction. Nano Res. 2022, 15, 2952–2960.

    Article  CAS  Google Scholar 

  39. Zhao, Y. X.; Zheng, L. R.; Shi, R.; Zhang, S.; Bian, X. A.; Wu, F.; Cao, X. Z.; Waterhouse, G. I. N.; Zhang, T. R. Alkali etching of layered double hydroxide nanosheets for enhanced photocatalytic N2 reduction to NH3. Adv. Energy Mater. 2020, 10, 2002199.

    Article  CAS  Google Scholar 

  40. McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.

    Article  CAS  Google Scholar 

  41. Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584–7588.

    Article  CAS  Google Scholar 

  42. Zhao, Z. Y.; Shao, Q.; Xue, J. Y.; Huang, B. L.; Niu, Z.; Gu, H. W.; Huang, X. Q.; Lang, J. P. Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction. Nano Res. 2022, 15, 310–316.

    Article  CAS  Google Scholar 

  43. Peng, L. S.; Yang, N.; Yang, Y. Q.; Wang, Q.; Xie, X. Y.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 24612–24619.

    Article  CAS  Google Scholar 

  44. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  45. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  46. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  47. Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  48. Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

    Article  CAS  Google Scholar 

  49. Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self-templated fabrication of MoNi4/MoO3−x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 2017, 29, 1703311.

    Article  Google Scholar 

  50. Kong, F. H.; Zhang, W. W.; Sun, L. P.; Huo, L. H.; Zhao, H. Interface electronic coupling in hierarchical FeLDH(FeCo)/Co(OH)2 arrays for efficient electrocatalytic oxygen evolution. ChemSusChem 2019, 12, 3592–3601.

    Article  CAS  Google Scholar 

  51. Ejaz, A.; Jeon, S. Synthesis and application of electrochemically reduced N-rGO-Co(OH)2 nanocomposite for concurrent detection of biomolecules. Electrochim. Acta 2017, 235, 709–719.

    Article  CAS  Google Scholar 

  52. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32, 751–767.

    Article  Google Scholar 

  53. Zhao, S.; Jin, R. X.; Abroshan, H.; Zeng, C. J.; Zhang, H.; House, S. D.; Gottlieb, E.; Kim, H. J.; Yang, J. C.; Jin, R. C. Gold nanoclusters promote electrocatalytic water oxidation at the nanocluster/CoSe2 interface. J. Am. Chem. Soc. 2017, 139, 1077–1080.

    Article  CAS  Google Scholar 

  54. Gu, D.; Jia, C. J.; Weidenthaler, C.; Bongard, H. J.; Spliethoff, B.; Schmidt, W.; Schüth, F. Highly ordered mesoporous cobalt-containing oxides: Structure, catalytic properties, and active sites in oxidation of carbon monoxide. J. Am. Chem. Soc. 2015, 137, 11407–11418.

    Article  CAS  Google Scholar 

  55. Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2017, 7, 1700467.

    Article  Google Scholar 

  56. Tang, T.; Jiang, W. J.; Niu, S.; Yuan, L. P.; Hu, J. S.; Wan, L. J. Hetero-coupling of a carbonate hydroxide and sulfide for efficient and robust water oxidation. J. Mater. Chem. A 2019, 7, 21959–21965.

    Article  CAS  Google Scholar 

  57. Jia, Y.; Zhang, L. Z.; Gao, G. P.; Chen, H.; Wang, B.; Zhou, J. Z.; Soo, M. T.; Hong, M.; Yan, X. C.; Qian, G. R. et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 2017, 29, 1700017.

    Article  Google Scholar 

  58. Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879.

    Article  CAS  Google Scholar 

  59. Wu, T. Z.; Sun, S. N.; Song, J. J.; Xi, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2019, 2, 763–772.

    Article  CAS  Google Scholar 

  60. Yao, N.; Li, P.; Zhou, Z. R.; Meng, R.; Cheng, G. Z.; Luo, W. Nitrogen engineering on 3D dandelion-flower-like CoS2 for high-performance overall water splitting. Small 2019, 15, 1901993.

    Article  Google Scholar 

  61. Wang, Y.; Wang, S.; Ma, Z. L.; Yan, L. T.; Zhao, X. B.; Xue, Y. Y.; Huo, J. M.; Yuan, X.; Li, S. N.; Zhai, Q. G. Competitive coordination-oriented monodispersed ruthenium sites in conductive MOF/LDH hetero-nanotree catalysts for efficient overall water splitting in alkaline media. Adv. Mater. 2022, 34, 2107488.

    Article  CAS  Google Scholar 

  62. Zhang, H. J.; Li, X. P.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S. L.; Maijenburg, A. W.; Wehrspohn, R. B. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2018, 28, 1706847.

    Article  Google Scholar 

  63. Huang, Y.; Wang, J. J.; Zou, Y.; Jiang, L. W.; Liu, X. L.; Jiang, W. J.; Liu, H.; Hu, J. S. Selective Se doping of NiFe2O4 on an active NiOOH scaffold for efficient and robust water oxidation. Chin. J. Catal. 2021, 42, 1395–1403.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 22025208, 22075300, and 21902162), the China National Postdoctoral Program for Innovative Talents (No. BX2021319), the DNL Cooperation Fund, CAS (No. DNL202008), and the Chinese Academy of Sciences. We also thank Dr. Z.-J. Z., X.-Y. Z., and B.-L. Q. for the XPS analysis; Y. S. for the XRD analysis; and Dr. B. G., Y.-X. C, and J.-L. Y. for SEM and TEM support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Song Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, T., Jiang, Z., Deng, J. et al. Constructing hierarchical nanosheet-on-microwire FeCo LDH@Co3O4 arrays for high-rate water oxidation. Nano Res. 15, 10021–10028 (2022). https://doi.org/10.1007/s12274-022-5094-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5094-8

Keywords

Navigation