Skip to main content
Log in

The role of CO2 dissociation in CO2 hydrogenation to ethanol on CoCu/silica catalysts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

CoCu-based catalysts are widely used in COx hydrogenation reactions to produce higher alcohols due to the C-C coupling ability of Co and the ability of Cu to produce alcohols. This work describes the role of easily happened CO2 dissociation on the CoCu surface during the reaction, using different silica support to tune the metal—support interaction, and reaches different selectivity to ethanol. CoCu supported on mesoporous silica MCM-41 shows ethanol selectivity as high as 85.3%, and the ethanol space-time yield (STY) is 0.229 mmol/(gmetal·h), however, poor selectivity to ethanol as low as 28.8% is observed on CoCu supported on amorphous silica. The different selectivity is due to the different intensities of CO2 dissociation on the catalysts. The adsorbed O produced via CO2 dissociation can occupy the cobalt hollow sites on CoCu surfaces, which are also the adsorption sites of C1 intermediates for further C-C coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Centi, G.; Perathoner, S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 2009, 148, 191–205.

    CAS  Google Scholar 

  2. Wang, W.; Wang, S. P.; Ma, X. B.; Gong, J. L. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 2011, 40, 3703–3727.

    CAS  Google Scholar 

  3. Porosoff, M. D.; Yan, B. H.; Chen, J. G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities. Energy Environ. Sci. 2016, 9, 62–73.

    CAS  Google Scholar 

  4. Xu, D.; Wang, Y. Q.; Ding, M. Y.; Hong, X. L.; Liu, G. L.; Tsang, S. C. E. Advances in higher alcohol synthesis from CO2 hydrogenation. Chem 2021, 7, 849–881.

    CAS  Google Scholar 

  5. Saeidi, S.; Najari, S.; Hessel, V.; Wilson, K.; Keil, F. J.; Concepción, P.; Suib, S. L.; Rodrigues, A. E. Recent advances in CO2 hydrogenation to value-added products-current challenges and future directions. Prog. Energy Combust. Sci. 2021, 85, 100905.

    Google Scholar 

  6. Alvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev. 2017, 117, 9804–9838.

    CAS  Google Scholar 

  7. Bai, S. X.; Shao, Q.; Wang, P. T.; Dai, Q. G.; Wang, X. Y.; Huang, X. Q. Highly active and selective hydrogenation of CO2 to ethanol by ordered Pd-Cu nanoparticles. J. Am. Chem. Soc. 2017, 139, 6827–6830.

    CAS  Google Scholar 

  8. An, B.; Li, Z.; Song, Y.; Zhang, J. Z.; Zeng, L. Z.; Wang, C.; Lin, W. B. Cooperative copper centres in a metal-organic framework for selective conversion of CO2 to ethanol. Nat. Catal. 2019, 2, 709–717.

    CAS  Google Scholar 

  9. Xu, D.; Ding, M. Y.; Hong, X. L.; Liu, G. L.; Tsang, S. C. E. Selective C2+ alcohol synthesis from direct CO2 hydrogenation over a Cs-promoted Cu-Fe-Zn catalyst. ACS Catal. 2020, 10, 5250–5260.

    CAS  Google Scholar 

  10. Ao, M.; Pham, G. H.; Sunarso, J.; Tade, M. O.; Liu, S. M. Active centers of catalysts for higher alcohol synthesis from syngas: A review. ACS Catal. 2018, 8, 7025–7050.

    CAS  Google Scholar 

  11. Luk, H. T.; Mondelli, C.; Ferré, D. C.; Stewart, J. A.; Pérez-Ramírez, J. Status and prospects in higher alcohols synthesis from syngas. Chem. Soc. Rev. 2017, 46, 1358–1426.

    CAS  Google Scholar 

  12. Yang, C. S.; Mu, R. T.; Wang, G. S.; Song, J. M.; Tian, H.; Zhao, Z. J.; Gong, J. L. Hydroxyl-mediated ethanol selectivity of CO2 hydrogenation. Chem. Sci. 2019, 10, 3161–3167.

    Google Scholar 

  13. Wang, G. S.; Luo, R.; Yang, C. S.; Song, J. M.; Xiong, C. Y.; Tian, H.; Zhao, Z. J.; Mu, R. T.; Gong, J. L. Active sites in CO2 hydrogenation over confined VOx-Rh catalysts. Sci. China Chem. 2019, 62, 1710–1719.

    CAS  Google Scholar 

  14. Kusama, H.; Okabe, K.; Sayama, K.; Arakawa, H. CO2 hydrogenation to ethanol over promoted Rh/SiO2 catalysts. Catal. Today 1996, 28, 261–266.

    CAS  Google Scholar 

  15. Ouyang, B.; Xiong, S. H.; Zhang, Y. H.; Liu, B.; Li, J. L. The study of morphology effect of Pt/Co3O4 catalysts for higher alcohol synthesis from CO2 hydrogenation. Appl. Catal. A Gen. 2017, 543, 189–195.

    CAS  Google Scholar 

  16. Wang, L. X.; Wang, L.; Zhang, J.; Liu, X. L.; Wang, H.; Zhang, W.; Yang, Q.; Ma, J. Y.; Dong, X.; Yoo, S. J. et al. Selective hydrogenation of CO2 to ethanol over cobalt catalysts. Angew. Chem., Int. Ed. 2018, 57, 6104–6108.

    CAS  Google Scholar 

  17. Wang, L. X.; He, S. X.; Wang, L.; Lei, Y.; Meng, X. J.; Xiao, F. S. Cobalt-nickel catalysts for selective hydrogenation of carbon dioxide into ethanol. ACS Catal. 2019, 9, 11335–11340.

    CAS  Google Scholar 

  18. Zhang, S. N.; Liu, X. F.; Shao, Z. L.; Wang, H.; Sun, Y. H. Direct CO2 hydrogenation to ethanol over supported Co2C catalysts: Studies on support effects and mechanism. J. Catal. 2020, 382, 86–96.

    CAS  Google Scholar 

  19. He, Z. H.; Qian, Q. L.; Ma, J.; Meng, Q. L.; Zhou, H. C.; Song, J. L.; Liu, Z. M.; Han, B. X. Water-enhanced synthesis of higher alcohols from CO2 hydrogenation over a Pt/Co3O4 catalyst under milder conditions. Angew. Chem., Int. Ed. 2016, 55, 737–741.

    CAS  Google Scholar 

  20. Yang, C. S.; Liu, S. H.; Wang, Y. N.; Song, J. M.; Wang, G. S.; Wang, S.; Zhao, Z. J.; Mu, R. T.; Gong, J. L. The interplay between structure and product selectivity of CO2 hydrogenation. Angew. Chem., Int. Ed. 2019, 58, 11242–11247.

    CAS  Google Scholar 

  21. Li, W. H.; Zhang, G. H.; Jiang, X.; Liu, Y.; Zhu, J.; Ding, F. S.; Liu, Z. M.; Guo, X. W.; Song, C. S. CO2 hydrogenation on unpromoted and M-promoted Co/TiO2 catalysts (M = Zr, K, Cs): Effects of crystal phase of supports and metal-support interaction on tuning product distribution. ACS Catal. 2019, 9, 2739–2751.

    CAS  Google Scholar 

  22. Singh, J. A.; Cao, A.; Schumann, J.; Wang, T.; Nørskov, J. K.; Abild-Pedersen, F.; Bent, S. F. Theoretical and experimental studies of CoGa catalysts for the hydrogenation of CO2 to methanol. Catal. Lett. 2018, 148, 3583–3591.

    CAS  Google Scholar 

  23. Su, J. J.; Zhang, Z. P.; Fu, D. L.; Liu, D.; Xu, X. C.; Shi, B. F.; Wang, X.; Si, R.; Jiang, Z.; Xu, J. et al. Higher alcohols synthesis from syngas over CoCu/SiO2 catalysts: Dynamic structure and the role of Cu. J. Catal. 2016, 336, 94–106.

    CAS  Google Scholar 

  24. Xu, X. C.; Su, J. J.; Tian, P. F.; Fu, D. L.; Dai, W. W.; Mao, W.; Yuan, W. K.; Xu, J.; Han, Y. F. First-principles study of C2 oxygenates synthesis directly from syngas over CoCu bimetallic catalysts. J. Phys. Chem. C 2015, 119, 216–227.

    CAS  Google Scholar 

  25. Xiang, Y. Z.; Barbosa, R.; Kruse, N. Higher alcohols through CO hydrogenation over CoCu catalysts: Influence of precursor activation. ACS Catal. 2014, 4, 2792–2800.

    CAS  Google Scholar 

  26. Kattel, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 2017, 355, 1296–1299.

    CAS  Google Scholar 

  27. Qiu, M.; Tao, H. L.; Li, Y. L.; Li, Y.; Ding, K. N.; Huang, X.; Chen, W. K.; Zhang, Y. F. Toward improving CO2 dissociation and conversion to methanol via CO-hydrogenation on Cu (100) surface by introducing embedded Co nanoclusters as promoters: A DFT study. Appl. Surf. Sci. 2018, 427, 837–847.

    CAS  Google Scholar 

  28. Liu, C.; Cundari, T. R.; Wilson, A. K. CO2 reduction on transition metal (Fe, Co, Ni, and Cu) surfaces:In comparison with homogeneous catalysis. J. Phys. Chem. C 2012, 116, 5681–5688.

    CAS  Google Scholar 

  29. Liu, Q.; Han, Y.; Cai, J.; Crumlin, E. J.; Li, Y. M.; Liu, Z. CO2 activation on cobalt surface in the presence of H2O: An ambient-pressure X-ray photoelectron spectroscopy study. Catal. Lett. 2018, 148, 1686–1691.

    CAS  Google Scholar 

  30. Lin, T. J.; Gong, K.; Wang, C. Q.; An, Y. L.; Wang, X. X.; Qi, X. Z.; Li, S. G.; Lu, Y. W.; Zhong, L. S.; Sun, Y. H. Fischer-Tropsch synthesis to olefins: Catalytic performance and structure evolution of Co2C-based catalysts under a CO2 environment. ACS Catal. 2019, 9, 9554–9567.

    CAS  Google Scholar 

  31. Visconti, C. G.; Lietti, L.; Tronconi, E.; Forzatti, P.; Zennaro, R.; Finocchio, E. Fischer-Tropsch synthesis on a Co/Al2O3 catalyst with CO2 containing syngas. Appl. Catal. A Gen. 2009, 355, 61–68.

    CAS  Google Scholar 

  32. Panpranot, J.; Goodwin, J. G. Jr.; Sayari, A. Synthesis and characteristics of MCM-41 supported CoRu catalysts. Catal. Today 2002, 77, 269–284.

    CAS  Google Scholar 

  33. Panpranot, J.; Goodwin, J. G. Jr.; Sayari, A. CO hydrogenation on Ru-promoted Co/MCM-41 catalysts. J. Catal. 2002, 211, 530–539.

    CAS  Google Scholar 

  34. Li, X. K.; Ji, W. J.; Zhao, J.; Wang, S. J.; Au, C. T. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15. J. Catal. 2005, 236, 181–189.

    CAS  Google Scholar 

  35. Liang, J.; Liang, Z. B.; Zou, R. Q.; Zhao, Y. L. Heterogeneous catalysis in zeolites, mesoporous silica, and metal-organic frameworks. Adv. Mater. 2017, 29, 1701139.

    Google Scholar 

  36. Davidson, M.; Ji, Y. Z.; Leong, G. J.; Kovach, N. C.; Trewyn, B. G.; Richards, R. M. Hybrid mesoporous silica/noble-metal nanoparticle materials-synthesis and catalytic applications. ACS Appl. Nano Mater. 2018, 1, 4386–4400.

    CAS  Google Scholar 

  37. Yang, Q. L.; Cao, A.; Kang, N.; Ning, H. Y.; Wang, J. M.; Liu, Z. T.; Liu, Y. Bimetallic nano Cu-Co based catalyst for direct ethanol synthesis from syngas and its structure variation with reaction time in slurry reactor. Ind. Eng. Chem. Res. 2017, 56, 2889–2898.

    CAS  Google Scholar 

  38. Smith, M. L.; Campos, A.; Spivey, J. J. Reduction processes in Cu/SiO2, Co/SiO2, and CuCo/SiO2 catalysts. Catal. Today 2012, 182, 60–66.

    CAS  Google Scholar 

  39. Su, J. J.; Mao, W.; Xu, X. C.; Yang, Z.; Li, H. L.; Xu, J.; Han, Y. F. Kinetic study of higher alcohol synthesis directly from syngas over CoCu/SiO2 catalysts. AIChE J. 2014, 60, 1797–1809.

    CAS  Google Scholar 

  40. Ma, H. T.; Yuan, Z. Y.; Wang, Y.; Bao, X. H. Temperature-programmed surface reaction study on C2-oxygenate synthesis over SiO2 and nanoporous zeolitic material supported Rh-Mn catalysts. Surf. Interface Anal. 2001, 32, 224–227.

    CAS  Google Scholar 

  41. Kong, Y.; Zhu, H. Y.; Yang, G.; Guo, X. F.; Hou, W. H.; Yan, Q. J.; Gu, M.; Hu, C. Investigation of the structure of MCM-41 samples with a high copper content. Adv. Funct. Mater. 2004, 14, 816–820.

    Google Scholar 

  42. Guo, X. P.; Traitangwong, A.; Hu, M. X.; Zuo, C. C.; Meeyoo, V.; Peng, Z. J.; Li, C. S. Carbon dioxide methanation over nickel-based catalysts supported on various mesoporous material. Energy Fuels 2018, 32, 3681–3689.

    CAS  Google Scholar 

  43. Wang, N.; Yu, X. P.; Wang, Y.; Chu, W.; Liu, M. A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier. Catal. Today 2013, 212, 98–107.

    CAS  Google Scholar 

  44. Wang, D.; Bi, Q. Y.; Yin, G. H.; Zhao, W. L.; Huang, F. Q.; Xie, X. M.; Jiang, M. H. Direct synthesis of ethanol via CO2 hydrogenation using supported gold catalysts. Chem. Commun. 2016, 52, 14226–14229.

    CAS  Google Scholar 

  45. Ko, J.; Kim, B. K.; Han, J. W. Density functional theory study for catalytic activation and dissociation of CO2 on bimetallic alloy surfaces. J. Phys. Chem. C 2016, 120, 3438–3447.

    CAS  Google Scholar 

  46. Khassin, A. A.; Yurieva, T. M.; Kaichev, V. V.; Bukhtiyarov, V. I.; Budneva, A. A.; Paukshtis, E. A.; Parmon, V. N. Metal—support interactions in cobalt-aluminum co-precipitated catalysts: XPS and CO adsorption studies. J. Mol. Catal. A Chem. 2001, 175, 189–204.

    CAS  Google Scholar 

  47. Morales, F.; de Smit, E.; de Groot, F. M. F.; Visser, T.; Weckhuysen, B. M. Effects of manganese oxide promoter on the CO and H2 adsorption properties of titania-supported cobalt Fischer-Tropsch catalysts. J. Catal. 2007, 246, 91–99.

    CAS  Google Scholar 

  48. Smith, M. L.; Kumar, N.; Spivey, J. J. CO adsorption behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 catalysts studied by in situ DRIFTS. J. Phys. Chem. C 2012, 116, 7931–7939.

    CAS  Google Scholar 

  49. Wang, L. B.; Zhang, W. B.; Zheng, X. S.; Chen, Y. Z.; Wu, W. L.; Qiu, J. X.; Zhao, X. C.; Zhao, X.; Dai, Y. Z.; Zeng, J. Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation. Nat. Energy 2017, 2, 869–876.

    CAS  Google Scholar 

  50. de Lima, S. M.; da Silva, A. M.; Jacobs, G.; Davis, B. H.; Mattos, L. V.; Noronha, F. B. New approaches to improving catalyst stability over Pt/ceria during ethanol steam reforming: Sn addition and CO2 co-feeding. Appl. Catal. B:Environ. 2010, 96, 387–398.

    CAS  Google Scholar 

  51. da Silva, A. M.; de Souza, K. R.; Mattos, L. V.; Jacobs, G.; Davis, B. H.; Noronha, F. B. The effect of support reducibility on the stability of Co/CeO2 for the oxidative steam reforming of ethanol. Catal. Today 2011, 164, 234–239.

    CAS  Google Scholar 

  52. Das, T.; Deo, G. Synthesis, characterization and in situ DRIFTS during the CO2 hydrogenation reaction over supported cobalt catalysts. J. Mol. Catal. A Chem. 2011, 350, 75–82.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Key R&D Program of China (No. 2021YFA1500704), the National Natural Science Foundation of China (No. 22121004), the Haihe Laboratory of Sustainable Chemical Transformations (No. CYZC202107), the Program of Introducing Talents of Discipline to Universities (No. BP0618007), and the XPLORER PRIZE for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Jian Zhao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yang, C., Li, X. et al. The role of CO2 dissociation in CO2 hydrogenation to ethanol on CoCu/silica catalysts. Nano Res. 16, 6128–6133 (2023). https://doi.org/10.1007/s12274-022-5092-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5092-x

Keywords

Navigation