Skip to main content
Log in

In situ formed synaptic Zn@LiZn host derived from ZnO nanofiber decorated Zn foam for dendrite-free lithium metal anode

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium metal is regarded as the most promising anode material for next generation high energy density lithium batteries due to its high theoretical capacity and lowest potential versus standard hydrogen electrode. However, lithium dendrite growth and huge volume change during cycling hinder its practical application. It is of great importance to design advanced Li metal anodes to solve these problems. Herein, we report a ZnO-coated Zn foam as the host matrix to pre-store lithium through thermal infusing, achieving a Zn@ZnO foam supported Li composite electrode (LZO). Needlelike ZnO nanofibers grown on the Zn foam greatly increase the surface area and enhance the lithiophilicity of the Zn foam. In situ formed synaptic LiZn layer after lithium infusion can disperse local current density and lower Li diffusion barrier effectively, leading to homogeneous Li deposition behavior, thus suppressing dendrite formation. The porous Zn foam skeleton can accommodate volume variation of the electrode during long-term cycling. Benefiting from these merits, the LZO anode exhibits much better cycle stability and rate capability in both symmetrical and full cells with low voltage hysteresis than the bare Li anode. This work opens a new opportunity in designing high performance composite Li anode for lithium-metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  CAS  Google Scholar 

  2. Guo, Y. P.; Li, H. Q.; Zhai, T. Y. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 2017, 29, 1700007.

    Article  Google Scholar 

  3. He, P.; Zhang, T.; Jiang, J.; Zhou, H. S. Lithium-air batteries with hybrid electrolytes. J. Phys. Chem. Lett. 2016, 7, 1267–1280.

    Article  CAS  Google Scholar 

  4. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

    Article  CAS  Google Scholar 

  5. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  CAS  Google Scholar 

  6. Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 2002, 148, 405–416.

    Article  CAS  Google Scholar 

  7. Tao, R.; Bi, X. X.; Li, S.; Yao, Y.; Wu, F.; Wang, Q.; Zhang, C. Z.; Lu, J. Kinetics tuning the electrochemistry of lithium dendrites formation in lithium batteries through electrolytes. ACS Appl. Mater. Interfaces 2017, 9, 7003–7008.

    Article  CAS  Google Scholar 

  8. Chen, R. J.; Qu, W. J.; Guo, X.; Li, L.; Wu, F. The pursuit of solidstate electrolytes for lithium batteries: From comprehensive insight to emerging horizons. Mater. Horiz. 2016, 3, 487–516.

    Article  CAS  Google Scholar 

  9. Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.

    Article  Google Scholar 

  10. Shi, L.; Xu, A.; Zhao, T. S. First-principles investigations of the working mechanism of 2D h-BN as an interfacial layer for the anode of lithium metal batteries. ACS Appl. Mater. Interfaces 2017, 9, 1987–1994.

    Article  CAS  Google Scholar 

  11. Zhang, J. F.; Su, Y. P.; Zhang, Y. G. Recent advances in research on anodes for safe and efficient lithium-metal batteries. Nanoscale 2020, 12, 15528–15559.

    Article  CAS  Google Scholar 

  12. Zhang, R.; Li, N. W.; Cheng, X. B.; Yin, Y. X.; Zhang, Q.; Guo, Y. G. Advanced micro/nanostructures for lithium metal anodes. Adv. Sci. 2017, 4, 1600445.

    Article  Google Scholar 

  13. Liu, Y. Y.; Lin, D. C.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 2016, 7, 10992.

    Article  CAS  Google Scholar 

  14. Lin, D. C.; Liu, Y. Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H. T.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 2016, 11, 626–632.

    Article  CAS  Google Scholar 

  15. Deng, W.; Zhu, W. H.; Zhou, X. F.; Liu, Z. P. Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity. Energy Storage Mater. 2018, 15, 266–273.

    Article  Google Scholar 

  16. Yue, X. Y.; Wang, W. W.; Wang, Q. C.; Meng, J. K.; Zhang, Z. Q.; Wu, X. J.; Yang, X. Q.; Zhou, Y. N. CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Mater. 2018, 14, 335–344.

    Article  Google Scholar 

  17. Qiu, H. L.; Tang, T. Y.; Asif, M.; Huang, X. X.; Hou, Y. L. 3D porous Cu current collectors derived by hydrogen bubble dynamic template for enhanced Li metal anode performance. Adv. Funct. Mater. 2019, 29, 1808468.

    Article  Google Scholar 

  18. Chen, C.; Yang, Y. F.; Shao, H. X. Enhancement of the lithium cycling capability using Li-Zn alloy substrate for lithium metal batteries. Electrochim. Acta 2014, 137, 476–483.

    Article  CAS  Google Scholar 

  19. Liang, Y; Cao, S; Wei, Q. L.; Zeng, R. S.; Zhao, J. L.; Li, H. Z.; Yu, W. W.; Zou, B. S. Reversible Zn2+ insertion in tungsten ion-activated titanium dioxide nanocrystals for electrochromic windows. Nano-Micro Lett. 2021, 13, 196.

    Article  CAS  Google Scholar 

  20. Wang, G.; Xiong, X. H.; Zou, P. J.; Fu, X. X.; Lin, Z. H.; Li, Y. P.; Liu, Y. Z.; Yang, C. H.; Liu, M. L. Lithiated zinc oxide nanorod arrays on copper current collectors for robust Li metal anodes. Chem. Eng. J. 2019, 378, 122243.

    Article  CAS  Google Scholar 

  21. Chi, S. S.; Wang, Q. R.; Han, B.; Luo, C.; Jiang, Y. D.; Wang, J.; Wang, C. Y.; Yu, Y.; Deng, Y. H. Lithiophilic Zn sites in porous CuZn alloy induced uniform Li nucleation and dendrite-free Li metal deposition. Nano Lett. 2020, 20, 2724–2732.

    Article  CAS  Google Scholar 

  22. Ye, Y.; Liu, Y. T.; Wu, J. L.; Yang, Y. F. Lithiophilic Li-Zn alloy modified 3D Cu foam for dendrite-free lithium metal anode. J. Power Sources 2020, 472, 228520.

    Article  CAS  Google Scholar 

  23. Yue, X. Y.; Bao, J.; Yang, S. Y.; Luo, R. J.; Wang, Q. C.; Wu, X. J.; Shadike, Z.; Yang, X. Q.; Zhou, Y. N. Petaloid-shaped ZnO coated carbon felt as a controllable host to construct hierarchical Li composite anode. Nano Energy 2020, 71, 104614.

    Article  CAS  Google Scholar 

  24. Liu, T. C.; Chen, S. Q.; Sun, W. W.; Lv, L. P.; Du, F. H.; Liu, H.; Wang, Y. Lithiophilic vertical cactus-like framework derived from Cu/Zn-based coordination polymer through in situ chemical etching for stable lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2008514.

    Article  CAS  Google Scholar 

  25. Sharma, Y.; Sharma, N.; Subbarao, G.; Chowdari, B. Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries. Solid State Ion. 2008, 179, 587–597.

    Article  CAS  Google Scholar 

  26. Zhai, N. S.; Li, M. W.; Wang, W. L.; Zhang, D. L.; Xu, D. G. The application of the EIS in Li-ion batteries measurement. J. Phys. Conf. Ser. 2006, 48, 1157–1161.

    Article  Google Scholar 

  27. Wang, S. H.; Yue, J. P.; Dong, W.; Zuo, T. T.; Li, J. Y.; Liu, X. L.; Zhang, X. D.; Liu, L.; Shi, J. L.; Yin, Y. X. et al. Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nat. Commun. 2019, 10, 4930.

    Article  Google Scholar 

  28. Wang, J. Y.; Wang, H. S.; Xie, J.; Yang, A. K.; Pei, A.; Wu, C. L.; Shi, F. F.; Liu, Y. Y.; Lin, D. C.; Gong, Y. J. et al. Fundamental study on the wetting property of liquid lithium. Energy Storage Mater. 2018, 14, 345–350.

    Article  Google Scholar 

  29. Barton, J. L.; Bockris, J. O. The electrolytic growth of dendrites from ionic solutions. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 1962, 268, 485–505.

    CAS  Google Scholar 

  30. Liu, S. F.; Xia, X. H.; Deng, S. J.; Xie, D.; Yao, Z. J.; Zhang, L. Y.; Zhang, S. Z.; Wang, X. L.; Tu, J. P. In situ solid electrolyte interphase from spray quenching on molten Li: A new way to construct high-performance lithium-metal anodes. Adv. Mater. 2019, 31, 1806470.

    Article  Google Scholar 

  31. Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853–1858.

    Article  CAS  Google Scholar 

  32. Ding, F.; Xu, W.; Chen, X. L.; Zhang, J.; Engelhard, M. H.; Zhang, Y. H.; Johnson, B. R.; Crum, J. V.; Blake, T. A.; Liu, X. et al. Effects of carbonate solvents and lithium salts on morphology and Coulombic efficiency of lithium electrode. J. Electrochem. Soc. 2013, 160, A1894–A1901.

    Article  CAS  Google Scholar 

  33. Chang, S. Z.; Jin, X.; He, Q. Y.; Liu, T. C.; Fang, J. B.; Shen, Z. H.; Li, Z. H.; Zhang, S.; Dahbi, M.; Alami, J. et al. In situ formation of polycyclic aromatic hydrocarbons as an artificial hybrid layer for lithium metal anodes. Nano Lett. 2022, 22, 263–270.

    Article  CAS  Google Scholar 

  34. Zhao, Q.; Stalin, S.; Archer, L. A. Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 2021, 5, 1119–1142.

    Article  CAS  Google Scholar 

  35. Shrestha, N. K.; Hahn, R.; Lee, K.; Tighineanu, A.; Schmuki, P. Electrochemically assisted self-assembling of ZnF2-ZnO nanospheres: Formation of hierarchical thin porous films. ECS Electrochem. Lett. 2013, 3, E1–E3.

  36. Contarini, S.; Rabalais, J. W. Ion bombardment-induced decomposition of Li and Ba sulfates and carbonates studied by X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1985, 35, 191–201.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 52071085) and Shanghai Aerospace Science and Technology Innovation Fund (No. SAST2020-102). The authors thank beamline BL02U02 at Shanghai Synchrotron Radiation Facility (SSRF) for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ning Zhou.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, J., Pei, HJ., Yue, XY. et al. In situ formed synaptic Zn@LiZn host derived from ZnO nanofiber decorated Zn foam for dendrite-free lithium metal anode. Nano Res. 16, 8345–8353 (2023). https://doi.org/10.1007/s12274-022-5089-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5089-5

Keywords

Navigation