Skip to main content
Log in

In-situ synthesis of high thermal stability and salt resistance carbon dots for injection pressure reduction and enhanced oil recovery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) show great potential as a new type of oil-displacing agent for unconventional oil and gas development. However, the instability and easy aggregation epitomize the challenges that accompany the application of CDs in high temperature and high salinity (HT/HS) reservoirs. In this research, novel benzene sulfonate-modified carbon dots (BS-CDs) with remarkable thermal stability and salt resistance were fabricated through an in-situ electrochemical exfoliation method. Molecular simulation verifies that the introduction of benzene sulfonate groups substantially strengthens the electrostatic repulsion between BS-CDs, leading to outstanding dispersibility and stability even at a temperature of 100 °C and salinity of 14 × 104 mg/L. Core flooding tests show that 0.05 wt.% BS-CDs nanofluid can significantly reduce the water injection pressure by 50.00% and enhanced oil recovery (EOR) to 68.39% under HT/HS conditions. According to the atomic force microscopy (AFM) scanning results, the adhesion force between the core (after BS-CDs treatment) and oil decreased by 11.94 times, indicating that the hydrophilicity of the core surface was increased. In addition, the distribution of the adhesion force curve is more concentrated, which means that the micro-scale wettability of the core changes from oil-wet to more homogeneous water-wet. This study provides a feasible way for the development and application of good thermal stability and salt resistance CDs in unconventional reservoir development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Idogun, A. K.; Iyagba, E. T.; Ukwotije-Ikwut, R. P.; Aseminaso, A. A review study of oil displacement mechanisms and challenges of nanoparticle enhanced oil recovery. In Society of Petroleum Engineers Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 2016, pp 184352.

  2. Qing, F.; Yan, J. P.; Wang, J.; Hu, Q. H.; Wang, M.; Geng, B.; Chao, J. Pore structure and fluid saturation of near-oil source low-permeability turbidite sandstone of the Dongying Sag in the Bohai Bay Basin, east China. J. Petrol. Sci. Eng. 2021, 196, 108106.

    Article  CAS  Google Scholar 

  3. Wang, L.; Tian, Y.; Yu, X. Y.; Wang, C.; Yao, B. W.; Wang, S. H.; Winterfeld, P. H.; Wang, X.; Yang, Z. Z.; Wang, Y. H. et al. Advances in improved/enhanced oil recovery technologies for tight and shale reservoirs. Fuel 2017, 210, 425–445.

    Article  CAS  Google Scholar 

  4. Yuan, W. W. Study on percolation mechanism of low permeability reservoir. IOP Conf. Ser. Earth Environ. Sci. 2021, 770, 012045.

    Article  Google Scholar 

  5. Akbar, I.; Zhou, H. T.; Liu, W.; Qureshi, A. S.; Memon, A.; Muther, T.; Ansari, U.; UsmanTahir, M.; Bakhsh, A.; Shaikh, A. et al. Nano-suspension combined effect with polymer gels for enhanced oil recovery in low permeability reservoir. Arab. J. Geosci. 2021, 14, 1473.

    Article  CAS  Google Scholar 

  6. Wang, F. J.; Liu, Y. K.; Wang, Y. P.; Hu, C. Y. Study on the theory of effective displacement in low permeability reservoir. Adv. Mater. Res. 2013, 868, 551–555.

    Article  Google Scholar 

  7. Yue, L.; Pu, W. F.; Zhao, S.; Zhang, S.; Ren, F.; Xu, D. S. Insights into mechanism of low salinity water flooding in sandstone reservoir from interfacial features of oil/brine/rock via intermolecular forces. J. Mol. Liquids 2020, 313, 113435.

    Article  CAS  Google Scholar 

  8. Arab, D.; Bryant, S. L.; Torsæter, O.; Kantzas, A. Water flooding of sandstone oil reservoirs: Underlying mechanisms in imbibition vs. drainage displacement. J. Petrol. Sci. Eng. 2022, 213, 110379.

    Article  CAS  Google Scholar 

  9. Guo, W. J.; Fu, S. S.; Li, A. F.; Xie, H. J.; Cui, S. T.; Nangendo, J. Experimental research on the mechanisms of improving water flooding in fractured-vuggy reservoirs. J. Petrol. Sci. Eng. 2022, 213, 110383.

    Article  CAS  Google Scholar 

  10. Mahmoudzadeh, A.; Fatemi, M.; Masihi, M. Microfluidics experimental investigation of the mechanisms of enhanced oil recovery by low salinity water flooding in fractured porous media. Fuel 2022, 314, 123067.

    Article  CAS  Google Scholar 

  11. Sun, L. D.; Wu, X. L.; Zhou, W. F.; Li, X. J.; Han, P. H. Technologies of enhancing oil recovery by chemical flooding in Daqing Oilfield, NE China. Petrol Explor. Dev. 2018, 45, 673–684.

    Article  Google Scholar 

  12. Liu, W. D.; Wang, G. F.; Liao, G. Z.; Wang, H. Z.; Wang, Z. M.; Wang, Q.; Wang, Z. B. Production calculation of the second and tertiary recovery combination reservoirs under chemical flooding. Petrol. Explor. Dev. 2021, 48, 1403–1410.

    Article  Google Scholar 

  13. Wei, L. X.; Zhang, L.; Chao, M.; Jia, X. L.; Liu, C.; Shi, L. J. Synthesis and study of a new type of nonanionic demulsifier for chemical flooding emulsion demulsification. ACS Omega 2021, 6, 17709–17719.

    Article  CAS  Google Scholar 

  14. Tavakkoli, O.; Kamyab, H.; Shariati, M.; Mohamed, A. M.; Junin R. Effect of nanoparticles on the performance of polymer/surfactant flooding for enhanced oil recovery: A review. Fuel 2022, 312, 122867.

    Article  CAS  Google Scholar 

  15. Li, Y. Y.; Dai, C. L.; Zhou, H. D.; Wang, X. K.; Lv, W. J.; Wu, Y. N.; Zhao, M. W. A novel nanofluid based on fluorescent carbon nanoparticles for enhanced oil recovery. Ind. Eng. Chem. Res. 2017, 56, 12464–12470.

    Article  CAS  Google Scholar 

  16. Shen, M.; Resasco, D. E. Emulsions stabilized by carbon nanotubesilica nanohybrids. Langmuir 2009, 25, 10843–10851.

    Article  CAS  Google Scholar 

  17. Luo, D.; Wang, F.; Zhu, J. Y.; Tang, L.; Zhu, Z.; Bao, J. M.; Willson, R. C.; Yang, Z. Z.; Ren, Z. F. Secondary oil recovery using graphene-based amphiphilic janus nanosheet fluid at an ultralow concentration. Ind. Eng. Chem. Res. 2017, 56, 11125–11132.

    Article  CAS  Google Scholar 

  18. Hendraningrat, L.; Li, S. D.; Torsæter, O. A core flood investigation of nanofluid enhanced oil recovery. J. Petrol. Sci. Eng. 2013, 111, 128–138.

    Article  CAS  Google Scholar 

  19. Zhu, H.; Xia, J. H.; Sun, Z. G.; Zhang, J.; Zhang, Y. M.; Wang, F. H. Application of nanometer-silicon dioxide in tertiary oil recovery. Acta Petrol. Sin. 2006, 27, 96–99.

    CAS  Google Scholar 

  20. Feng, X. Y.; Hou, J. R.; Cheng, T. T.; Zhai, H. Y. Preparation and oil displacement properties of oleic acid-modified nano-TiO2. Oilfield Chem. 2019, 36, 280–285.

    CAS  Google Scholar 

  21. Lai, N. J.; Tang, L.; Jia, N.; Qiao, D. Y.; Chen, J. L.; Wang, Y.; Zhao, X. B. Feasibility study of applying modified nano-SiO2 hyperbranched copolymers for enhanced oil recovery in low-mid permeability reservoirs. Polymers (Basel) 2019, 11, 1483–1483.

    Article  CAS  Google Scholar 

  22. Eltoum, H.; Yang, Y. L.; Hou, J. R. The effect of nanoparticles on reservoir wettability alteration: A critical review. Petrol. Sci. 2021, 18, 136–153.

    Article  CAS  Google Scholar 

  23. Manshad, A. K.; Rezaei, M.; Moradi, S.; Nowrouzi, I.; Mohammadi, A. H. Wettability alteration and interfacial tension (IFT) reduction in enhanced oil recovery (EOR) process by ionic liquid flooding. J. Mol. Liquids 2017, 248, 153–162.

    Article  CAS  Google Scholar 

  24. Binks, B. P.; Lumsdon, S. O. Pickering emulsions stabilized by monodisperse latex particles: Effects of particle size. Langmuir 2001, 17, 4540–4547.

    Article  CAS  Google Scholar 

  25. Hong, W. H.; Yu, L. Experiment research on flooding by nanosolution in Jiangsu oil field. Petrochem. Ind. Appl. 2011, 30, 8–12.

    Google Scholar 

  26. Liu, M. L.; Chen, B. B.; Li, C. M.; Huang, C. Z. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019, 21, 449–471.

    Article  CAS  Google Scholar 

  27. Hu, C.; Li, M. Y.; Qiu, J. S.; Sun, Y. P. Design and fabrication of carbon dots for energy conversion and storage. Chem. Soc. Rev. 2019, 48, 2315–2337.

    Article  CAS  Google Scholar 

  28. Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

    Article  CAS  Google Scholar 

  29. Soleimani, H.; Baig, M. K.; Yahya, N.; Khodapanah, L.; Sabet, M.; Demiral, B. M. R.; Burda, M. Impact of carbon nanotubes based nanofluid on oil recovery efficiency using core flooding. Results Phys. 2018, 9, 39–48.

    Article  Google Scholar 

  30. Sikiru, S.; Rostami, A.; Soleimani, H.; Yahya, N.; Afeez, Y.; Aliu, O.; Yusuf, J. Y.; Oladosu, T. L. Graphene: Outlook in the enhance oil recovery (EOR). J. Mol. Liq. 2021, 321, 114519.

    Article  CAS  Google Scholar 

  31. Wu, Y. N.; Li, Y.; Cao, M. J.; Dai, C. L.; He, L.; Yang, Y. P. Preparation and stabilization mechanism of carbon dots nanofluids for drag reduction. Petrol. Sci. 2020, 17, 1717–1725.

    Article  CAS  Google Scholar 

  32. Baragau, I. A.; Lu, Z.; Power, N. P.; Morgan, D. J.; Bowen, J.; Diaz, P.; Kellici, S. Continuous hydrothermal flow synthesis of S-functionalised carbon quantum dots for enhanced oil recovery. Chem. Eng. J. 2021, 405, 126631.

    Article  CAS  Google Scholar 

  33. Wu, Y. N.; Cao, M. J.; Zhao, Q. S.; Wu, X. C.; Guo, F.; Tang, L. S.; Tian, X. J.; Wu, W. T.; Shi, Y. F.; Dai, C. L. Novel high-hydrophilic carbon dots from petroleum coke for boosting injection pressure reduction and enhancing oil recovery. Carbon 2021, 184, 186–194.

    Article  CAS  Google Scholar 

  34. Lu, J.; Yang, J. X.; Wang, J. Z.; Lim, A.; Wang, S.; Loh, K. P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 2009, 3, 2367–2375.

    Article  CAS  Google Scholar 

  35. Travlou, N. A.; Secor, J.; Bandosz, T. J. Corrigendum to “highly luminescent S-doped carbon dots for the selective detection of ammonia” [Carbon 114 (2017) 544–556]. Carbon 2017, 116, 275–277.

    Article  CAS  Google Scholar 

  36. Xu, Q.; Li, B. F.; Ye, Y. C.; Cai, W.; Li, W. J.; Yang, C. S.; Chen, Y.; Xu, M.; Li, N.; Zheng, X. S. et al. Synthesis, mechanical investigation, and application of nitrogen and phosphorus co-doped carbon dots with a high photoluminescent quantum yield. Nano Res. 2018, 11, 3691–3701.

    Article  CAS  Google Scholar 

  37. Sun, X. Y.; Ge, J. J. Synergism between lipophilic surfactant and lipophilic SiO2 nanoparticles enhances self-emulsification performance. J Petrol. Sci Eng. 2022, 216, 110760.

    Article  CAS  Google Scholar 

  38. Zhao, M. W.; Song, X. G.; Zhou, D.; Lv, W. J.; Dai, C. L.; Yang, Q. R.; Li, Y.; Zhang, B. H.; Zhao, Y. R.; Wu, Y. N. Study on the reducing injection pressure regulation of hydrophobic carbon nanoparticles. Langmuir 2020, 36, 3989–3996.

    Article  CAS  Google Scholar 

  39. Wei, B.; Li, Q. Z.; Jin, F. Y.; Li, H.; Wang, C. Y. The potential of a novel nanofluid in enhancing oil recovery. Energy Fuels 2016, 30, 2882–2891.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (No. 2019YFA0708700), the Innovation fund project for graduate student of China University of Petroleum (East China) (No. 22CX04050A), and the Fundamental Research Funds for the Central Universities, the China National Petroleum Corporation Innovation Found (No. 2021DQ02-0205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yining Wu or Qingshan Zhao.

Electronic Supplementary Material

12274_2022_5083_MOESM1_ESM.pdf

In-situ synthesis of high thermal stability and salt resistance carbon dots for injection pressure reduction and enhanced oil recovery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Tang, L., Liu, D. et al. In-situ synthesis of high thermal stability and salt resistance carbon dots for injection pressure reduction and enhanced oil recovery. Nano Res. 16, 12058–12065 (2023). https://doi.org/10.1007/s12274-022-5083-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5083-y

Keywords

Navigation