Skip to main content
Log in

All-inorganic transparent Hf0.85Ce0.15O2 ferroelectric thin films with high flexibility and stability

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electronic devices that are transparent and flexible have a wide range of applications in the domains of vital sign parameter monitoring, health management, and so on. Ferroelectric memory is a revolutionary nonvolatile memory that is ideal for data storage and processing in transparent flexible electronic systems. In this study, Ce-doped hafnium oxide ferroelectric thin film is manufactured on mica substrate by the chemical solution deposition with transparent indium tin oxide (ITO) thin films as the bottom electrodes. The transmittance of mica/ITO/Hf0.85Ce0.15O2 thin film is over 80%. The 2Pr of the transparent flexible Hf0.85Ce0.15O2 ferroelectric thin film is increased by about 22.4% and the Ec is reduced by 26.7% compared with those of Hf0.85Ce0.15O2 ferroelectric thin film grown on p+-Si substrate. The transparent flexible Hf0.85Ce0.15O2 ferroelectric thin film can remain keeping good quality when being bent under ±2.5 mm bending radius. Additionally, degradation of polarization, retention, and endurance performance was not obvious even at a bending radius of 5.0 mm after 104 bending cycles. This research provides a new strategy and an important experimental basis for the development and implementation of transparent flexible ferroelectric memories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shafique, K.; Khawaja, B. A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of Things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access 2020, 8, 23022–23040.

    Google Scholar 

  2. Kim, D. H.; Ghaffari, R.; Lu, N. S.; Rogers, J. A. Flexible and stretchable electronics for biointegrated devices. Annu. Rev. Biomed. Eng. 2012, 14, 113–128.

    CAS  Google Scholar 

  3. Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

    CAS  Google Scholar 

  4. Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635.

    CAS  Google Scholar 

  5. Mikolajick, T.; Schroeder, U.; Slesazeck, S. The past, the present, and the future of ferroelectric memories. IEEE Trans. Electron Devices 2020, 67, 1434–1443.

    CAS  Google Scholar 

  6. Ma, C. H.; Jiang, J.; Shao, P. W.; Peng, Q. X.; Huang, C. W.; Wu, P. C.; Lee, J. T.; Lai, Y. H.; Tsai, D. P.; Wu, J. M. et al. Transparent antiradiative ferroelectric heterostructure based on flexible oxide heteroepitaxy. ACS Appl. Mater. Interfaces 2018, 10, 30574–30580.

    CAS  Google Scholar 

  7. Ren, C. L.; Tan, C. B.; Gong, L. J.; Tang, M. K.; Liao, M.; Tang, Y.; Zhong, X. L.; Guo, H. X.; Wang, J. B. Highly transparent, all-oxide, heteroepitaxy ferroelectric thin film for flexible electronic devices. Appl. Surf. Sci. 2018, 458, 540–545.

    CAS  Google Scholar 

  8. Gao, H.; Yang, Y. X.; Wang, Y. J.; Chen, L.; Wang, J. L.; Yuan, G. L.; Liu, J. M. Transparent, flexible, fatigue-free, optical-read, and nonvolatile ferroelectric memories. ACS Appl. Mater. Interfaces 2019, 11, 35169–35176.

    CAS  Google Scholar 

  9. Jin, H. Z.; Zhu, J. Size effect and fatigue mechanism in ferroelectric thin films. J. Appl. Phys. 2002, 92, 4594–4598.

    CAS  Google Scholar 

  10. Ihlefeld, J. F.; Harris, D. T.; Keech, R.; Jones, J. L.; Maria, J. P.; Trolier-McKinstry, S. Scaling effects in perovskite ferroelectrics: Fundamental limits and process-structure-property relations. J. Am. Ceram. Soc. 2016, 99, 2537–2557.

    CAS  Google Scholar 

  11. Park, M. H.; Lee, Y. H.; Kim, H. J.; Kim, Y. J.; Moon, T.; Do Kim, K.; Müller, J.; Kersch, A.; Schroeder, U.; Mikolajick, T. et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 2015, 27, 1811–1831.

    CAS  Google Scholar 

  12. Khan, S. B.; Wu, H.; Ma, L. W.; Hou, M. J.; Zhang, Z. J. HfO2 nanorod array as high-performance and high-temperature antireflective coating. Adv. Mater. Interfaces 2017, 4, 1600892.

    Google Scholar 

  13. Böscke, T. S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99, 102903.

    Google Scholar 

  14. Park, M. H.; Kim, H. J.; Kim, Y. J.; Lee, W.; Kim, H. K.; Hwang, C. S. Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes. Appl. Phys. Lett. 2013, 102, 112914.

    Google Scholar 

  15. Zeng, B. J.; Xiao, W. W.; Liao, J. J.; Liu, H.; Liao, M.; Peng, Q. X.; Zheng, S. Z.; Zhou, Y. C. Compatibility of HfN metal gate electrodes with Hf0.5Zr0.5O2 ferroelectric thin films for ferroelectric field-effect transistors. IEEE Electron Device Lett. 2018, 39, 1508–1511.

    CAS  Google Scholar 

  16. Polakowski, P.; Riedel, S.; Weinreich, W.; Rudolf, M.; Sundqvist, J.; Seidel, K.; Muller, J. Ferroelectric deep trench capacitors based on Al: HfO2 for 3D nonvolatile memory applications. In 2014 IEEE 6th International Memory Workshop (IMW), Taipei, China, 2014, pp 1–4.

  17. Florent, K.; Pesic, M.; Subirats, A.; Banerjee, K.; Lavizzari, S.; Arreghini, A.; Di Piazza, L.; Potoms, G.; Sebaai, F.; McMitchell, S. R. C. et al. Vertical ferroelectric HfO2 FET based on 3-D NAND architecture: Towards dense low-power memory. In 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2018, pp 2.5. 1–2.5. 4.

  18. Cheema, S. S.; Kwon, D.; Shanker, N.; Dos Reis, R.; Hsu, S. L.; Xiao, J.; Zhang, H. G.; Wagner, R.; Datar, A.; McCarter, M. R. et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 2020, 580, 478–482.

    CAS  Google Scholar 

  19. Tian, X.; Shibayama, S.; Nishimura, T.; Yajima, T.; Migita, S.; Toriumi, A. Evolution of ferroelectric HfO2 in ultrathin region down to 3 nm. Appl. Phys. Lett. 2018, 112, 102902.

    Google Scholar 

  20. Gong, N. B.; Ma, T. P. Why is FE-HfO2 more suitable than PZT or SBT for scaled nonvolatile 1-T memory cell? A retention perspective. IEEE Electron Device Letter. 2016, 37, 1123–1126.

    CAS  Google Scholar 

  21. Pan, X.; Ma, T. P. Retention mechanism study of the ferroelectric field effect transistor. Appl. Phys. Lett. 2011, 99, 013505.

    Google Scholar 

  22. Schroeder, U.; Park, M. H.; Mikolajick, T.; Hwang, C. S. The fundamentals and applications of ferroelectric HfO2. Nat. Rev. Mater. 2022, 7, 653–669.

    Google Scholar 

  23. Martin, D.; Müller, J.; Schenk, T.; Arruda, T. M.; Kumar, A.; Strelcov, E.; Yurchuk, E.; Müller, S.; Pohl, D.; Schröder, U. et al. Ferroelectricity in Si-doped HfO2 revealed: A binary lead-free ferroelectric. Adv. Mater. 2014, 26, 8198–8202.

    CAS  Google Scholar 

  24. Mueller, S.; Mueller, J.; Singh, A.; Riedel, S.; Sundqvist, J.; Schroeder, U.; Mikolajick, T. Incipient ferroelectricity in Al-doped HfO2 thin films. Adv. Funct. Mater. 2012, 22, 2412–2417.

    CAS  Google Scholar 

  25. Park, M. H.; Kim, H. J.; Kim, Y. J.; Moon, T.; Kim, K. D.; Hwang, C. S. Thin HfxZr1−xO2 films: A new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv. Energy Mater. 2014, 4, 1400610.

    Google Scholar 

  26. Shiraishi, T.; Choi, S.; Kiguchi, T.; Konno, T. J. Structural evolution of epitaxial CeO2−HfO2 thin films using atomic-scale observation: Formation of ferroelectric phase and domain structure. Acta Mater. 2022, 235, 118091.

    CAS  Google Scholar 

  27. Kim, M. G.; Kanatzidis, M. G.; Facchetti, A.; Marks, T. J. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 2011, 10, 382–388.

    CAS  Google Scholar 

  28. Bitla, Y.; Chu, Y. H. van der Waals oxide heteroepitaxy for soft transparent electronics. Nanoscale 2020, 12, 18523–18544.

    CAS  Google Scholar 

  29. Estandía, S.; Dix, N.; Chisholm, M. F.; Fina, I.; Sánchez, F. Domain-matching epitaxy of ferroelectric Hf0.5Zr0.5O2(111) on La2/3Sr1/3MnO3(001). Cryst. Growth Des. 2020, 20, 3801–3806.

    Google Scholar 

  30. Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. S. P.; Koppens, F. H. L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518.

    CAS  Google Scholar 

  31. Tu, N. Y.; Jiang, J.; Chen, Q.; Liao, J. J.; Liu, W. Y.; Yang, Q.; Jiang, L. M.; Zhou, Y. C. Flexible ferroelectric capacitors based on Bi3.15Nd0.85Ti3O12/muscovite structure. Smart Mater. Struct. 2019, 28, 054002.

    CAS  Google Scholar 

  32. Guan, Z.; Li, Y. K.; Zhao, Y. F.; Peng, Y.; Han, G. Q.; Zhong, N.; Xiang, P. H.; Chu, J. H.; Duan, C. G. Mechanical polarization switching in Hf0.5Zr0.5O2 thin film. Nano Lett. 2022, 22, 4792–4799.

    CAS  Google Scholar 

  33. Xu, T.; Xiang, L. Y.; Xu, M. L.; Xie, W. F.; Wang, W. Excellent low-voltage operating flexible ferroelectric organic transistor nonvolatile memory with a sandwiching ultrathin ferroelectric film. Sci. Rep. 2017, 7, 8890.

    Google Scholar 

  34. Xu, M. L.; Guo, S. X.; Xiang, L. Y.; Xu, T.; Xie, W. F.; Wang, W. High mobility flexible ferroelectric organic transistor nonvolatile memory with an ultrathin AlOx interfacial layer. IEEE Trans. Electron Devices 2018, 65, 1113–1118.

    CAS  Google Scholar 

  35. Khan, M. A.; Bhansali, U. S.; Alshareef, H. N. Fabrication and characterization of all-polymer, transparent ferroelectric capacitors on flexible substrates. Org. Electron. 2011, 12, 2225–2229.

    CAS  Google Scholar 

  36. Kim, W. Y.; Lee, H. C. Stable ferroelectric poly(vinylidene fluoride-trifluoroethylene) film for flexible nonvolatile memory application. IEEE Electron Device Lett. 2012, 33, 260–262.

    CAS  Google Scholar 

  37. Jiang, J.; Bitla, Y.; Huang, C. W.; Do, T. H.; Liu, H. J.; Hsieh, Y. H.; Ma, C. H.; Jang, C. Y.; Lai, Y. H.; Chiu, P. W. et al. Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci. Adv. 2017, 3, e1700121.

    Google Scholar 

  38. Tsai, M. F.; Jiang, J.; Shao, P. W.; Lai, Y. H.; Chen, J. W.; Ho, S. Z.; Chen, Y. C.; Tsai, D. P.; Chu, Y. H. Oxide heteroepitaxy-based flexible ferroelectric transistor. ACS Appl. Mater. Interfaces 2019, 11, 25882–25890.

    CAS  Google Scholar 

  39. Yu, H.; Chung, C. C.; Shewmon, N.; Ho, S.; Carpenter, J. H.; Larrabee, R.; Sun, T. L.; Jones, J. L.; Ade, H.; O’Connor, B. T. et al. Flexible inorganic ferroelectric thin films for nonvolatile memory devices. Adv. Funct. Mater. 2017, 27, 1700461.

    Google Scholar 

  40. Liu, H. F.; Lu, T. Q.; Li, Y. X.; Ju, Z. Y.; Zhao, R. T.; Li, J. Z.; Shao, M. H.; Zhang, H. N.; Liang, R. R.; Wang, X. R. et al. Flexible quasi-van der Waals ferroelectric hafnium-based oxide for integrated high-performance nonvolatile memory. Adv. Sci. 2020, 7, 2001266.

    CAS  Google Scholar 

  41. Liu, W. Y.; Liao, J. J.; Jiang, J.; Zhou, Y. C.; Chen, Q.; Mo, S. T.; Yang, Q.; Peng, Q. X.; Jiang, L. M. Highly stable performance of flexible Hf0.6Zr0.4O2 ferroelectric thin films under multi-service conditions. J. Mater. Chem. C 2020, 8, 3878–3886.

    CAS  Google Scholar 

  42. Chen, Y. T.; Yang, Y.; Yuan, P.; Jiang, P. F.; Wang, Y.; Xu, Y. N.; Lv, S. X.; Ding, Y. X.; Dang, Z. W.; Gao, Z. M. et al. Flexible Hf0.5Zr0.5O2 ferroelectric thin films on polyimide with improved ferroelectricity and high flexibility. Nano Res. 2022, 15, 2913–2918.

    CAS  Google Scholar 

  43. Joh, H.; Jung, M.; Hwang, J.; Goh, Y.; Jung, T.; Jeon, S. Flexible ferroelectric hafnia-based synaptic transistor by focused-microwave annealing. ACS Appl. Mater. Interfaces. 2022, 14, 1326–1333.

    CAS  Google Scholar 

  44. Zhong, H.; Li, M. Q.; Zhang, Q. H.; Yang, L. H.; He, R.; Liu, F.; Liu, Z. H.; Li, G.; Sun, Q. C.; Xie, D. G. et al. Large-scale Hf0.5Zr0.5O2 membranes with robust ferroelectricity. Adv. Mater. 2022, 34, 2109889.

    CAS  Google Scholar 

  45. Yang, B. B.; Li, C. H.; Liu, M.; Wei, R. H.; Tang, X. W.; Hu, L.; Song, W. H.; Zhu, X. B.; Sun, Y. P. Design of flexible inorganic BiFe0.93Mn0.07O3 ferroelectric thin films for nonvolatile memory. J. Materiomics. 2020, 6, 600–606.

    Google Scholar 

  46. Sun, H. Y.; Luo, Z.; Zhao, L. T.; Liu, C. C.; Ma, C.; Lin, Y.; Gao, G. Y.; Chen, Z. W.; Bao, Z. W.; Jin, X. et al. BiFeO3-based flexible ferroelectric memristors for neuromorphic pattern recognition. ACS Appl. Electron. Mater. 2020, 2, 1081–1089.

    CAS  Google Scholar 

  47. Pesquera, D.; Parsonnet, E.; Qualls, A.; Xu, R. J.; Gubser, A. J.; Kim, J.; Jiang, Y. Z.; Velarde, G.; Huang, Y. L.; Hwang, H. Y. et al. Beyond substrates: Strain engineering of ferroelectric membranes. Adv. Mater. 2020, 32, 2003780–2003789.

    CAS  Google Scholar 

  48. Ko, D. L.; Tsai, M. F.; Chen, J. W.; Shao, P. W.; Tan, Y. Z.; Wang, J. J.; Ho, S. Z.; Lai, Y. H.; Chueh, Y. L.; Chen, Y. C. et al. Mechanically controllable nonlinear dielectrics. Sci. Adv. 2020, 6, eaaz3180.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11902285 and 12072307), the Department of Education Project of Hunan Province, China (Nos. 21B0112 and 19A106), the Science and Technology Agency Project of Hunan Province, China (No. 2020JJ5526), the China Postdoctoral Science Foundation (No. 2019TQ0273), and the Outstanding Youth Science Foundation of Hunan Province, China (No. 2021JJ20041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiong Yang, Biao Zhang or Jie Jiang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, ST., Feng, KM., Pang, JL. et al. All-inorganic transparent Hf0.85Ce0.15O2 ferroelectric thin films with high flexibility and stability. Nano Res. 16, 5065–5072 (2023). https://doi.org/10.1007/s12274-022-5074-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5074-z

Keywords

Navigation