Skip to main content
Log in

Proton antagonist membrane towards exclusive CO2 reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Membrane electrode assembly reactor offers great promise toward practical CO2 electrolysis. Unfortunately, traditional proton exchange membrane possesses strong acidic chemical environment, which facilitates undesired hydrogen evolution reaction. Here we report a proton antagonist strategy, through which the proton diffusion pathways have been severely impeded by Na+ cation to produce an alkaline-rich environment. With this new membrane electrode assembly, we can significantly suppress the hydrogen evolution and achieve a Faradaic efficiency of 95.7% for CO with 51.5% energy efficiency. In addition, our proton antagonist membrane outperforms the commercial anion exchange membrane in both conductivity and oxidation resistance lifetime, which are crucial for large scale electrolysis of carbon neutral chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Y. H.; Ozden, A.; Leow, W. R.; Ou, P. F.; Huang, J. E.; Wang, Y. H.; Bertens, K.; Xu, Y.; Liu, Y.; Roy, C. et al. Redox-mediated electrosynthesis of ethylene oxide from CO2 and water. Nat. Catal. 2022, 5, 185–192.

    Google Scholar 

  2. Xiao, T. S.; Tang, C.; Li, H. B.; Ye, T.; Ba, K.; Gong, P.; Sun, Z. Z. CO2 reduction with coin catalyst. Nano Res. 2022, 15, 3859–3865.

    CAS  Google Scholar 

  3. García de Arquer, F. P.; Dinh, C. T.; Ozden, A.; Wicks, J.; McCallum, C.; Kirmani Ahmad, R.; Nam, D. H.; Gabardo, C.; Seifitokaldani, A.; Wang, X. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A·cm−2. Science 2020, 367, 661–666.

    Google Scholar 

  4. Wakerley, D.; Lamaison, S.; Wicks, J.; Clemens, A.; Feaster, J.; Corral, D.; Jaffer, S. A.; Sarkar, A.; Fontecave, M.; Duoss, E. B. et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy 2022, 7, 130–143.

    CAS  Google Scholar 

  5. Millet, P.; Ngameni, R.; Grigoriev, S. A.; Mbemba, N.; Brisset, F.; Ranjbari, A.; Etiévant, C. PEM water electrolyzers: From electrocatalysis to stack development. Int. J. Hydrog. Energy 2010, 35, 5043–5052.

    CAS  Google Scholar 

  6. Salvatore, D. A.; Gabardo, C. M.; Reyes, A.; O’Brien, C. P.; Holdcroft, S.; Pintauro, P.; Bahar, B.; Hickner, M.; Bae, C.; Sinton, D. et al. Designing anion exchange membranes for CO2 electrolysers. Nat. Energy 2021, 6, 339–348.

    CAS  Google Scholar 

  7. Chen, N. J.; Paek, S. Y.; Lee, J. Y.; Park, J. H.; Lee, S. Y.; Lee, Y. M. High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A·cm−2 and a durability of 1,000 hours. Energy Environ. Sci. 2021, 14, 6338–6348.

    CAS  Google Scholar 

  8. Chen, N. J.; Jin, Y. Q.; Liu, H. J.; Hu, C.; Wu, B.; Xu, S. Y.; Li, H.; Fan, J. T.; Lee, Y. M. Insight into the alkaline stability of N-heterocyclic ammonium groups for anion-exchange polyelectrolytes. Angew. Chem. 2021, 133, 19421–19429.

    Google Scholar 

  9. Banham, D.; Choi, J. Y.; Kishimoto, T.; Ye, S. Y. Integrating PGM-free catalysts into catalyst layers and proton exchange membrane fuel cell devices. Adv. Mater. 2019, 31, 1804846.

    Google Scholar 

  10. Kutz, R. B.; Chen, Q. M.; Yang, H. Z.; Sajjad, S. D.; Liu, Z. C.; Masel, I. R. Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis. Energy Technol. 2017, 5, 929–936.

    CAS  Google Scholar 

  11. Kim, Y.; Wang, Y. M.; France-Lanord, A.; Wang, Y. C.; Wu, Y. C. M.; Lin, S. B.; Li, Y. F.; Grossman, J. C.; Swager, T. M. Ionic highways from covalent assembly in highly conducting and stable anion exchange membrane fuel cells. J. Am. Chem. Soc. 2019, 141, 18152–18159.

    CAS  Google Scholar 

  12. Cha, M. S.; Park, J. E.; Kim, S.; Han, S. H.; Shin, S. H.; Yang, S. H.; Kim, T. H.; Yu, D. M.; So, S.; Hong, Y. T. et al. Poly (carbazole)-based anion-conducting materials with high performance and durability for energy conversion devices. Energy Environ. Sci. 2020, 13, 3633–3645.

    CAS  Google Scholar 

  13. Varcoe, J. R.; Atanassov, P.; Dekel, D. R.; Herring, A. M.; Hickner, M. A.; Kohl, P. A.; Kucernak, A. R.; Mustain, W. E.; Nijmeijer, K.; Scott, K. et al. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 2014, 7, 3135–3191.

    CAS  Google Scholar 

  14. Fan, J. T.; Chen, M.; Zhao, Z. L.; Zhang, Z.; Ye, S. Y.; Xu, S. Y.; Wang, H. J.; Li, H. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nat. Energy 2021, 6, 475–486.

    CAS  Google Scholar 

  15. Monteiro, M. C. O.; Philips, M. F.; Schouten, K. J. P.; Koper, M. T. M. Efficiency and selectivity of CO2 reduction to CO on gold gas diffusion electrodes in acidic media. Nat. Commun. 2021, 12, 4943.

    CAS  Google Scholar 

  16. Delacourt, C.; Ridgway, P. L.; Kerr, J. B.; Newman, J. Design of an electrochemical cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature. Meet. Abstr. 2007, MA2007-02, 197.

    Google Scholar 

  17. Ma, L.; Fan, S.; Zhen, D. X.; Wu, X. M.; Liu, S. S.; Lin, J. J.; Huang, S. Q.; Chen, W.; He, G. H. Electrochemical reduction of CO2 in proton exchange membrane reactor: The function of buffer layer. Ind. Eng. Chem. Res. 2017, 56, 10242–10250.

    CAS  Google Scholar 

  18. Fujinuma, N.; Ikoma, A.; Lofland, S. E. Highly efficient electrochemical CO2 reduction reaction to CO with one-pot synthesized co-pyridine-derived catalyst incorporated in a Nafion-based membrane electrode assembly. Adv. Energy Mater. 2020, 10, 2001645.

    CAS  Google Scholar 

  19. O’Brien, C. P.; Miao, R. K.; Liu, S. J.; Xu, Y.; Lee, G.; Robb, A.; Huang, J. E.; Xie, K.; Bertens, K.; Gabardo, C. M. et al. Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration. ACS Energy Lett. 2021, 6, 2952–2959.

    Google Scholar 

  20. Huang, J. E.; Li, F. W.; Ozden, A.; Sedighian Rasouli, A.; García de Arquer, F. P.; Liu, S. J.; Zhang, S. Z.; Luo, M. C.; Wang, X.; Lum, Y. et al. CO2 electrolysis to multicarbon products in strong acid. Science 2021, 372, 1074–1078.

    CAS  Google Scholar 

  21. Savage, J.; Tse, Y. L. S.; Voth, G. A. Proton transport mechanism of perfluorosulfonic acid membranes. J. Phys. Chem. C 2014, 118, 17436–17445.

    CAS  Google Scholar 

  22. Hu, J.; Zhang, H. M.; Xu, W. B.; Yuan, Z. Z.; Li, X. F. Mechanism and transfer behavior of ions in Nafion membranes under alkaline media. J. Membr. Sci. 2018, 566, 8–14.

    CAS  Google Scholar 

  23. Singh, R. K.; Kunimatsu, K.; Miyatake, K.; Tsuneda, T. Experimental and theoretical infrared spectroscopic study on hydrated Nafion membrane. Macromolecules 2016, 49, 6621–6629.

    CAS  Google Scholar 

  24. Jin, F.; Li, Y. D. A FTIR and TPD examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule. Catal. Today 2009, 145, 101–107.

    CAS  Google Scholar 

  25. Liang, Z. X.; Chen, W. M.; Liu, J. G.; Wang, S. L.; Zhou, Z. H.; Li, W. Z.; Sun, G. Q.; Xin, Q. FT-IR study of the microstructure of Nafion® membrane. J. Membr. Sci. 2004, 233, 39–44.

    CAS  Google Scholar 

  26. Huang, W. W.; Frech, R.; Wheeler, R. A. Molecular structures and normal vibrations of CF3SO3 and its lithium ion pairs and aggregates. J. Phys. Chem. 1994, 98, 100–110.

    CAS  Google Scholar 

  27. Han, J. H.; Lee, K. W.; Jeon, G. W.; Lee, C. E.; Park, W. K.; Choi, E. H. 1H nuclear magnetic resonance study of hydrated water dynamics in perfluorosulfonic acid ionomer Nafion. Appl. Phys. Lett. 2015, 106, 023104.

    Google Scholar 

  28. Ye, G.; Janzen, N.; Goward, G. R. Solid-state NMR study of two classic proton conducting polymers: Nafion and sulfonated poly(ether ether ketone)s. Macromolecules 2006, 39, 3283–3290.

    CAS  Google Scholar 

  29. Friedman, A. K.; Shi, W. Q.; Losovyj, Y.; Siedle, A. R.; Baker, L. A. Mapping microscale chemical heterogeneity in Nafion membranes with X-ray photoelectron spectroscopy. J. Electrochem. Soc. 2018, 165, H733–H741.

    CAS  Google Scholar 

  30. Lettenmeier, P.; Wang, L.; Golla-Schindler, U.; Gazdzicki, P.; Cañas, N. A.; Handl, M.; Hiesgen, R.; Hosseiny, S. S.; Gago, A. S.; Friedrich, K. A. Nanosized IrOx-Ir catalyst with relevant activity for anodes of proton exchange membrane electrolysis produced by a cost-effective procedure. Angew. Chem. 2016, 128, 752–756.

    Google Scholar 

  31. Choi, Y.; Ryu, G. H.; Min, S. H.; Lee, B. R.; Song, M. H.; Lee, Z.; Kim, B. S. Interface-controlled synthesis of heterodimeric silver-carbon nanoparticles derived from polysaccharides. ACS Nano 2014, 8, 11377–11385.

    CAS  Google Scholar 

  32. Han, A. D.; Fu, C. H.; Yan, X. H.; Chen, J. R.; Cheng, X. J.; Ke, C. C.; Hou, J. B.; Shen, S. Y.; Zhang, J. L. Effect of cobalt ion contamination on proton conduction of ultrathin Nafion film. Int. J. Hydrog. Energy 2020, 45, 25276–25285.

    CAS  Google Scholar 

  33. Zhang, X.; Zhao, X. H.; Zhu, P.; Adler, Z.; Wu, Z. Y.; Liu, Y. Y.; Wang, H. T. Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media. Nat. Commun. 2022, 13, 2880.

    CAS  Google Scholar 

  34. Yang, K. L.; Li, M. R.; Subramanian, S.; Blommaert, M. A.; Smith, W. A.; Burdyny, T. Cation-driven increases of CO2 utilization in a bipolar membrane electrode assembly for CO2 electrolysis. ACS Energy Lett. 2021, 6, 4291–4298.

    CAS  Google Scholar 

  35. Wang, X.; Wang, Z. Y.; García de Arquer, F. P.; Dinh, C. T.; Ozden, A.; Li, Y. C.; Nam, D. H.; Li, J.; Liu, Y. S.; Wicks, J. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 2020, 5, 478–486.

    CAS  Google Scholar 

  36. Verma, S.; Lu, X.; Ma, S. C.; Masel, R. I.; Kenis, P. J. A. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 2016, 18, 7075–7084.

    CAS  Google Scholar 

  37. Verma, S.; Hamasaki, Y.; Kim, C.; Huang, W. X.; Lu, S.; Jhong, H. R. M.; Gewirth, A. A.; Fujigaya, T.; Nakashima, N.; Kenis, P. J. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 2018, 3, 193–198.

    CAS  Google Scholar 

  38. Zheng, T. T.; Jiang, K.; Ta, N.; Hu, Y. F.; Zeng, J.; Liu, J. Y.; Wang, H. T. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 2019, 3, 265–278.

    CAS  Google Scholar 

  39. Xia, C.; Qiu, Y. R.; Xia, Y.; Zhu, P.; King, G.; Zhang, X.; Wu, Z. Y.; Kim, J. Y.; Cullen, D. A.; Zheng, D. X. et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 2021, 13, 887–894.

    CAS  Google Scholar 

  40. Jhong, H. R. M.; Tornow, C. E.; Kim, C.; Verma, S.; Oberst, J. L.; Anderson, P. S.; Gewirth, A. A.; Fujigaya, T.; Nakashima, N.; Kenis, P. J. Gold nanoparticles on polymer-wrapped carbon nanotubes: An efficient and selective catalyst for the electroreduction of CO2. ChemPhysChem 2017, 18, 3274–3279.

    CAS  Google Scholar 

  41. Ma, S. C.; Lan, Y. C.; Perez, G. M. J.; Moniri, S.; Kenis, P. J. A. Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction. ChemSusChem 2014, 7, 866–874.

    CAS  Google Scholar 

  42. Ma, S. C.; Liu, J. F.; Sasaki, K.; Lyth, S. M.; Kenis, P. J. A. Carbon foam decorated with silver nanoparticles for electrochemical CO2 conversion. Energy Technol. 2017, 5, 861–863.

    CAS  Google Scholar 

  43. Tornow, C. E.; Thorson, M. R.; Ma, S. C.; Gewirth, A. A.; Kenis, P. J. A. Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. J. Am. Chem. Soc. 2012, 134, 19520–19523.

    CAS  Google Scholar 

  44. Frühwirt, P.; Kregar, A.; Törring, J. T.; Katrašnik, T.; Gescheidt, G. Holistic approach to chemical degradation of Nafion membranes in fuel cells: Modelling and predictions. Phys. Chem. Chem. Phys. 2020, 22, 5647–5666.

    Google Scholar 

  45. Chen, C. B.; Li, Y. F.; Yang, P. D. Address the “alkalinity problem” in CO2 electrolysis with catalyst design and translation. Joule 2021, 5, 737–742.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21771040, 62074043, and 11705152), the National Key Research and Development Program of China (No. 2017YFA0207303), the Yiwu Research Institute Program of Fudan University (20-1-04).

Author information

Authors and Affiliations

Authors

Contributions

T.X. and Z.S. conceived the project, analyzed the data and wrote the paper. T.X. prepared all the catalysts. T.X., X.Y and Y.M. performed the CO2RR including the MEA evaluation and analyzed the gas products. T.X. and S.Z. contributed to the AEM stability tests, and characterizations of the material. T.X. T.Y and H. L. contributed to the supporting method and experiments. Z.S. supervised all research phases and revised the manuscript. All authors read and commented on the manuscript.

Corresponding author

Correspondence to Zhengzong Sun.

Additional information

Conflict of interest

All authors declare no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, T., Ma, Y., Zeng, S. et al. Proton antagonist membrane towards exclusive CO2 reduction. Nano Res. 16, 4589–4595 (2023). https://doi.org/10.1007/s12274-022-5067-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5067-y

Keywords

Navigation