Skip to main content
Log in

Theoretical kinetic quantitative calculation predicted the expedited polysulfides degradation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The performance of lithium-sulfur battery is restricted by the lower value of electrode conductance and the sluggish LiPSs degradation kinetics. Unfortunately, the degradation rate of polysulfides was mostly attributed to the catalytic energy barrier in previous, which is unable to give accurate predictions on the performance of lithium-sulfur battery. Thereby, a quantitative framework relating the battery performance to catalytic energy barrier and electrical conductivity of the cathode host is developed here to quantitate the tendency. As the model compound, calculated-Ti4O7 (c-Ti4O7) has the highest comprehensive index with excellent electrical conductivity, although the catalytic energy barrier is not ideal. Through inputting the experimental properties such as impedance and charge/discharge data into the as-build model, the final conclusion is still in line with our prediction that Ti4O7 host shows the most excellent electrochemical performance. Therefore, the accurate model here would be attainable to design lithium-sulfur cathode materials with a bottom—up manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Service, R. F. Lithium-sulfur batteries poised for leap. Science 2018, 359, 1080–1081.

    CAS  Google Scholar 

  2. Ruan, J. F.; Sun, H.; Song, Y.; Pang, Y. P.; Yang, J. H.; Sun, D. L.; Zheng, S. Y. Constructing 1D/2D interwoven carbonous matrix toenable high-efficiency sulfur immobilization in Li-S battery. Energy Mater. 2021, 1, 100018.

    CAS  Google Scholar 

  3. Castillo, J.; Qiao, L. X.; Santiago, A.; Judez, X.; de Buruaga, A. S.; Jiménez-Martín, G.; Armand, M.; Zhang, H.; Li, C. M. Perspective of polymer-based solid-state Li-S batteries. Energy Mater. 2022, 2, 200003.

    Google Scholar 

  4. Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006.

    CAS  Google Scholar 

  5. Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

    CAS  Google Scholar 

  6. Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

    Google Scholar 

  7. Boyjoo, Y.; Shi, H. D.; Tian, Q.; Liu, S. M.; Liang, J.; Wu, Z. S.; Jaroniec, M.; Liu, J. Engineering nanoreactors for metal-chalcogen batteries. Energy Environ. Sci. 2021, 14, 540–575.

    CAS  Google Scholar 

  8. Shi, H. D.; Dong, Y. F.; Zhou, F.; Chen, J.; Wu, Z. S. 2D hybrid interlayer of electrochemically exfoliated graphene and Co(OH)2 nanosheet as a bi-functionalized polysulfide barrier for high-performance lithium-sulfur batteries. J. Phys. Energy 2019, 1, 015002.

    CAS  Google Scholar 

  9. Sun, L.; Liu, Y. X.; Zhang, K. Q.; Cheng, F.; Jiang, R. Y.; Liu, Y. Q.; Zhu, J.; Jin, Z.; Pang, H. Rapid construction of highly-dispersed cobalt nanoclusters embedded in hollow cubic carbon walls as an effective polysulfide promoter in high-energy lithium-sulfur batteries. Nano Res. 2022, 15, 5105–5113.

    CAS  Google Scholar 

  10. Li, Z. F.; Wu, J. Y.; Chen, P. P.; Zeng, Q. H.; Wen, X.; Wen, W.; Liu, Y.; Chen, A. Q.; Guan, J. Z.; Liu, X. et al. A new metallic composite cathode originated from hyperbranched polymer coated MOF for high-performance lithium-sulfur batteries. Chem. Eng. J. 2022, 435, 135125.

    CAS  Google Scholar 

  11. Xue, Y. F.; Luo, D.; Yang, N.; Ma, G.; Zhang, Z.; Hou, J. F.; Wang, J. T.; Ma, C. Y.; Wang, X.; Jin, M. L. et al. Engineering checkerboard-like heterostructured sulfur electrocatalyst towards high-performance lithium sulfur batteries. Chem. Eng. J. 2022, 440, 135990.

    CAS  Google Scholar 

  12. Ma, G.; Yang, N.; Zhou, G. F.; Wang, X. The electrochemical reforming of glycerol at Pd nanocrystals modified ultrathin NiO nanoplates hybrids: An efficient system for glyceraldehyde and hydrogen coproduction. Nano Res. 2022, 15, 1934–1941.

    CAS  Google Scholar 

  13. Shi, H. D.; Ren, X. M.; Lu, J. M.; Dong, C.; Liu, J.; Yang, Q. H.; Chen, J.; Wu, Z. S. Dual-functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries. Adv. Energy Mater. 2020, 10, 2002271.

    CAS  Google Scholar 

  14. Fan, L. L.; Li, M.; Li, X. F.; Xiao, W.; Chen, Z. W.; Lu, J. Interlayer material selection for lithium-sulfur batteries. Joule 2019, 3, 361–386.

    CAS  Google Scholar 

  15. Zhao, Y.; Liu, J. F.; Zhou, Y.; Huang, X. F.; Liu, Q. Q.; Chen, F. M.; Qin, H. Q.; Lou, H. T.; Yu, D. Y. W.; Hou, X. H. Defect-rich amorphous iron-based oxide/graphene hybrid-modified separator toward the efficient capture and catalysis of polysulfides. ACS Appl. Mater. Interfaces 2021, 13, 41698–41706.

    CAS  Google Scholar 

  16. Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2—TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.

    CAS  Google Scholar 

  17. Wang, M. L.; Song, Y. Z.; Sun, Z. T.; Shao, Y. L.; Wei, C. H.; Xia, Z.; Tian, Z. N.; Liu, Z. F.; Sun, J. Y. Conductive and catalytic VTe2@MgO heterostructure as effective polysulfide promotor for lithium-sulfur batteries. ACS Nano 2019, 13, 13235–13243.

    CAS  Google Scholar 

  18. Paul, P.; Liu, P. Q. Dynamically reconfigurable bipolar optical gradient force induced by mid-infrared graphene plasmonic tweezers for sorting dispersive nanoscale objects. Adv. Opt. Mater. 2022, 10, 2101744.

    CAS  Google Scholar 

  19. He, J. R.; Hartmann, G.; Lee, M.; Hwang, G. S.; Chen, Y. F.; Manthiram, A. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries. Energy Environ. Sci. 2019, 12, 344–350.

    CAS  Google Scholar 

  20. Shi, H. D.; Qin, J. Q.; Lu, P. F.; Dong, C.; He, J.; Chou, X. J.; Das, P.; Wang, J. M.; Zhang, L. Z.; Wu, Z. S. Interfacial engineering of bifunctional niobium (V)-based heterostructure nanosheet toward high efficiency lean-electrolyte lithium-sulfur full batteries. Adv. Funct. Mater. 2021, 31, 2102314.

    CAS  Google Scholar 

  21. Yan, W. Q.; Yang, J. L.; Xiong, X. S.; Fu, L. J.; Chen, Y. H.; Wang, Z. G.; Zhu, Y. S.; Zhao, J. W.; Wang, T.; Wu, Y. P. Versatile asymmetric separator with dendrite-free alloy anode enables high-performance Li-S batteries. Adv. Sci. 2022, 9, 2202204.

    CAS  Google Scholar 

  22. Li, T.; Bai, X.; Gulzar, U.; Bai, Y. J.; Capiglia, C.; Deng, W.; Zhou, X. F.; Liu, Z. P.; Feng, Z. F.; Zaccaria, R. P. A comprehensive understanding of lithium-sulfur battery technology. Adv. Fonct. Mater. 2019, 29, 1901730.

    Google Scholar 

  23. Kumaresan, K.; Mikhaylik, Y.; White, R. E. A mathematical model for a lithium-sulfur cell. J. Electrochem. Soc. 2008, 155, A576–A582.

    CAS  Google Scholar 

  24. Su, Y. S.; Fu, Y. Z.; Cochell, T.; Manthiram, A. A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nat. Commun 2013, 4, 2985.

    Google Scholar 

  25. Tao, X. Y.; Wang, J. G.; Ying, Z. G.; Cai, Q. X.; Zheng, G. Y.; Gan, Y. P.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W. K. et al. Strong sulfur binding with conducting magnéli-phase TinO2n−1 nanomaterials for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5288–5294.

    CAS  Google Scholar 

  26. Song, Y. Z.; Zhao, W.; Kong, L.; Zhang, L.; Zhu, X. Y.; Shao, Y. L.; Ding, F.; Zhang, Q.; Sun, J. Y.; Liu, Z. F. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries. Energy Environ. Sci. 2018, 11, 2620–2630.

    CAS  Google Scholar 

  27. Song, J. J.; Guo, X.; Zhang, J. Q.; Chen, Y.; Zhang, C. Y.; Luo, L. Q.; Wang, F. Y.; Wang, G. X. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 6507–6513.

    CAS  Google Scholar 

  28. Bizuneh, G. G.; Fan, J. M.; Xu, P.; Yuan, R. M.; Cao, L.; Zheng, M. S.; Dong, Q. F. Promoting the sulfur conversion kinetics via a solid auxiliary redox couple embedded in the cathode of Li-S batteries. Sustainable Energy Fuels 2020, 4, 3701–3711.

    CAS  Google Scholar 

  29. Pang, Q.; Liang, X.; Kwok, C. Y.; Kulisch, J.; Nazar, L. F. A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density. Adv. Energy Mater. 2017, 7, 1601630.

    Google Scholar 

  30. Shi, H. D.; Zhao, X. J.; Wu, Z. S.; Dong, Y. F.; Lu, P. F.; Chen, J.; Ren, W. C.; Cheng, H. M.; Bao, X. H. Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithium-sulfur batteries. Nano Energy 2019, 60, 743–751.

    CAS  Google Scholar 

  31. Li, Y. Y.; Cai, Q. F.; Wang, L.; Li, Q. W.; Peng, X.; Gao, B.; Huo, K. F.; Chu, P. K. Mesoporous TiO2 nanocrystals/graphene as an efficient sulfur host material for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 23784–23792.

    CAS  Google Scholar 

  32. He, Q.; Yu, B.; Wang, H.; Rana, M.; Liao, X. B.; Zhao, Y. Oxygen defects boost polysulfides immobilization and catalytic conversion: First-principles computational characterization and experimental design. Nano Res. 2020, 13, 2299–2307.

    CAS  Google Scholar 

  33. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    CAS  Google Scholar 

  34. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Google Scholar 

  35. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  36. Wu, Q.; Yang, W. T. Empirical correction to density functional theory for van der Waals interactions. J. Chem. Phys. 2002, 116, 515–524.

    CAS  Google Scholar 

  37. Yan, Y. C.; Chen, Z.; Yang, J.; Guan, L.; Hu, H.; Zhao, Q. S.; Ren, H.; Lin, Y.; Li, Z. T.; Wu, M. B. Controllable substitution of S radicals on triazine covalent framework to expedite degradation of polysulfides. Small 2020, 16, 2004631.

    CAS  Google Scholar 

  38. You, H. H.; Wu, D. S.; Si, D. H.; Cao, M. N.; Sun, F. F.; Zhang, H.; Wang, H. M.; Liu, T. F.; Cao, R. Monolayer NiIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting. J. Am. Chem. Soc. 2022, 144, 9254–9263.

    CAS  Google Scholar 

  39. Cai, Z. Y.; Wang, P.; Zhang, J. J.; Chen, A. Y.; Zhang, J. W.; Yan, Y.; Wang, X. Y. Reinforced layered double hydroxide oxygen-evolution electrocatalysts: A polyoxometallic acid wet-etching approach and synergistic mechanism. Adv. Mater. 2022, 34, 2110696.

    CAS  Google Scholar 

  40. Zhang, L. F.; Zhao, W. H.; Zhang, W. H.; Chen, J.; Hu, Z. P. Gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction. Nano Res. 2019, 12, 1181–1186.

    CAS  Google Scholar 

  41. Liu, S. S.; Wang, M. F.; Qian, T.; Ji, H. Q.; Liu, J.; Yan, C. L. Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nat. Commun. 2019, 10, 3898.

    Google Scholar 

  42. Wang, W.; Shang, L.; Chang, G. J.; Yan, C. Y.; Shi, R.; Zhao, Y. X.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R. Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide. Adv. Mater. 2019, 31, 1808276.

    Google Scholar 

  43. Mou, S. Y.; Wu, T. W.; Xie, J. F.; Zhang, Y.; Ji, L.; Huang, H.; Wang, T.; Luo, Y. L.; Xiong, X. L.; Tang, B. et al. Boron phosphide nanoparticles: A nonmetal catalyst for high-selectivity electrochemical reduction of CO2 to CH3OH. Adv. Mater. 2019, 31, 1903499.

    Google Scholar 

  44. Zhou, G. M.; Zhao, S. Y.; Wang, T. S.; Yang, S. Z.; Johannessen, B.; Chen, H.; Liu, C. W.; Ye, Y. S.; Wu, Y. C.; Peng, Y. C. et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries. Nano Lett. 2020, 20, 1252–1261.

    CAS  Google Scholar 

  45. Lim, W. G.; Jo, C.; Cho, A.; Hwang, J.; Kim, S.; Han, J. W.; Lee, J. Approaching ultrastable high-rate Li-S batteries through hierarchically porous titanium nitride synthesized by multiscale phase separation. Adv. Mater. 2019, 31, 1806547.

    Google Scholar 

  46. Yang, X. F.; Gao, X. J.; Sun, Q.; Jand, S. P.; Yu, Y.; Zhao, Y.; Li, X.; Adair, K.; Kuo, L. Y.; Rohrer, J. et al. Promoting the transformation of Li2S2 to Li2S: Significantly increasing utilization of active materials for high-sulfur-loading Li-S batteries. Adv. Mater. 2019, 31, 1901220.

    Google Scholar 

  47. Park, J.; Kim, E. T.; Kim, C.; Pyun, J.; Jang, H. S.; Shin, J.; Choi, J. W.; Char, K.; Sung, Y. E. The importance of confined sulfur nanodomains and adjoining electron conductive pathways in subreaction regimes of Li-S batteries. Adv. Energy Mater. 2017, 7, 1700074.

    Google Scholar 

  48. Yang, X. F.; Yu, Y.; Yan, N.; Zhang, H. Z.; Li, X. F.; Zhang, H. M. 1-D oriented cross-linking hierarchical porous carbon fibers as a sulfur immobilizer for high performance lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 5965–5972.

    CAS  Google Scholar 

  49. Li, Y. J.; Fu, K. K.; Chen, C. J.; Luo, W.; Gao, T. T.; Xu, S. M.; Dai, J. Q.; Pastel, G.; Wang, Y. B.; Liu, B. Y. et al. Enabling high-areal-capacity lithium-sulfur batteries: Designing anisotropic and low-tortuosity porous architectures. ACS Nano 2017, 11, 4801–4807.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong, China (Nos. ZR2020JQ21 and ZR2021ZD24), the National Natural Science Foundation of China (Nos. 51873231 and 22138013), the Financial Support from Taishan Scholar Project (No. tsqn201909062), the Technology Foundation of Shandong Energy Group Co., LTD. (Nos. YKZB2020-176 and J2020004), and the Fundamental Research Funds for the Central Universities (No. 20CX05010A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Ren, Mingbo Wu or Zhongtao Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Rong, X., Li, T. et al. Theoretical kinetic quantitative calculation predicted the expedited polysulfides degradation. Nano Res. 16, 12035–12042 (2023). https://doi.org/10.1007/s12274-022-5061-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5061-4

Keywords

Navigation