Skip to main content
Log in

Effective regulation mechanisms of Fe-Ni(oxy)hydroxide: Ni-rich heteroatomic bonding (Ni-O-Fe-O-Ni) is essential

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although Fe-Ni combination performs well in transition metal-based oxygen evolution reaction (OER) electrocatalysts, there are lack of clear and general regulations mechanism to fully play the synergistic catalytic effect. Here, we made the utmost of the interaction of Fe-Ni heteroatomic pair to obtain a highly active Fe-Ni(oxy)hydroxide catalytic layer on iron foam (IF) and nickel foam (NF) by in-situ electrochemical deposition and rapid surface reconstruction, which only required 327 and 351 mV overpotential to provide a large current of 1,000 mA·cm−2, respectively. The results confirm that the moderate Ni-rich heteroatomic bonding (Ni-O-Fe-O-Ni) formed by adjusting the Ni/Fe ratio on the catalyst surface is important to offer predominant OER performance. Fe is a key component that enhances OER activity of Ni(O)OH, but Fe-rich structural surface formed by Fe-O-Ni-O-Fe bonding is not ideal. Finally, the remarkable oxygen evolution performance of the prepared Ni2Fe(O)OH/IF and FeNi2(O)OH/NF can be chalked up to the optimized electronic structure of Fe-Ni heteroatomic bonding, the efficient gas spillover, the fast electron transport, and nanosheet clusters morphology. In summary, our work suggests a comprehensive regulation mechanism for the construction of efficient Fe-Ni(oxy)hydroxide catalytic layer on inexpensive, stable, and self-supporting metallic material surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moysiadou, A.; Lee, S.; Hsu, C. S.; Chen, H. M.; Hu, X. L. Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: Cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step. J. Am. Chem. Soc. 2020, 142, 11901–11914.

    CAS  Google Scholar 

  2. Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Li, Y. Q. et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618.

    CAS  Google Scholar 

  3. Huang, C. Q.; Zhong, Y. H.; Chen, J. X.; Li, J.; Zhang, W.; Zhou, J. Q.; Zhang, Y. L.; Yu, L.; Yu, Y. Fe induced nanostructure reorganization and electronic structure modulation over CoNi(oxy)hydroxide nanorod arrays for boosting oxygen evolution reaction. Chem. Eng. J. 2021, 403, 126304.

    CAS  Google Scholar 

  4. Duan, Y.; Yu, Z. Y.; Hu, S. J.; Zheng, X. S.; Zhang, C. T.; Ding, H. H.; Hu, B. C.; Fu, Q. Q.; Yu, Z. L.; Zheng, X. et al. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew. Chem., Int. Ed. 2019, 58, 15772–15777.

    CAS  Google Scholar 

  5. Zhu, F. Y.; Xue, J. Y.; Zeng, L. J.; Shang, J. R.; Lu, S. L.; Cao, X. Q.; Abrahams, B. F.; Gu, H. W.; Lang, J. P. One-pot pyrolysis synthesis of highly active Ru/RuOx nanoclusters for water splitting. Nano Res. 2022, 15, 1020–1026.

    CAS  Google Scholar 

  6. Yao, N.; Fan, Z. Y.; Meng, R.; Jia, H. N.; Luo, W. A cobalt hydroxide coated metal-organic framework for enhanced water oxidation electrocatalysis. Chem. Eng. J. 2021, 408, 127319.

    CAS  Google Scholar 

  7. Chen, H.; Shi, L.; Liang, X.; Wang, L. N.; Asefa, T.; Zou, X. X. Optimization of active sites via crystal phase, composition, and morphology for efficient low-iridium oxygen evolution catalysts. Angew. Chem., Int. Ed. 2020, 59, 19654–19658.

    CAS  Google Scholar 

  8. Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.

    CAS  Google Scholar 

  9. Fan, R. Y.; Xie, J. Y.; Liu, H. J.; Wang, H. Y.; Li, M. X.; Yu, N.; Luan, R. N.; Chai, Y. M.; Dong, B. Directional regulating dynamic equilibrium to continuously update electrocatalytic interface for oxygen evolution reaction. Chem. Eng. J. 2022, 431, 134040.

    CAS  Google Scholar 

  10. Yan, M. L.; Zhao, Z. Y.; Cui, P. X.; Mao, K.; Chen, C.; Wang, X. Z.; Wu, Q.; Yang, H.; Yang, L. J.; Hu, Z. Construction of hierarchical FeNi3@(Fe, Ni)S2 core-shell heterojunctions for advanced oxygen evolution. Nano Res. 2021, 14, 4220–4226.

    CAS  Google Scholar 

  11. Zhang, X. J.; Chen, Y. F.; Chen, M. L.; Wang, B.; Yu, B.; Wang, X. Q.; Zhang, W. L.; Yang, D. X. FeNi3-modified Fe2O3/NiO/MoO2 heterogeneous nanoparticles immobilized on N, P co-doped CNT as an efficient and stable electrocatalyst for water oxidation. Nanoscale 2020, 12, 3777–3786.

    CAS  Google Scholar 

  12. Wu, T. Z.; Xu, Z. J. Oxygen evolution in spin-sensitive pathways. Curr. Opin. Electrochem. 2021, 30, 100804.

    CAS  Google Scholar 

  13. Wu, T. Z.; Ren, X.; Sun, Y. M.; Sun, S. N.; Xian, G. Y.; Scherer, G. G.; Fisher, A. C.; Mandler, D.; Ager, J. W.; Grimaud, A. et al. Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nat. Commun. 2021, 12, 3634.

    CAS  Google Scholar 

  14. Zhou, Y. N.; Wang, F. L.; Dou, S. Y.; Shi, Z. N.; Dong, B.; Yu, W. L.; Zhao, H. Y.; Wang, F. G.; Yu, J. F.; Chai, Y. M. Motivating high-valence Nb doping by fast molten salt method for NiFe hydroxides toward efficient oxygen evolution reaction. Chem. Eng. J. 2022, 427, 131643.

    CAS  Google Scholar 

  15. Liang, C. W.; Zou, P. C.; Nairan, A.; Zhang, Y. Q.; Liu, J. X.; Liu, K. W.; Hu, S. Y.; Kang, F. Y.; Fan, H. J.; Yang, C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86–95.

    CAS  Google Scholar 

  16. Zhang, G. W.; Zeng, J. R.; Yin, J.; Zuo, C. Y.; Wen, P.; Chen, H. T.; Qiu, Y. J. Iron-facilitated surface reconstruction to in-situ generate nickel-iron oxyhydroxide on self-supported FeNi alloy fiber paper for efficient oxygen evolution reaction. Appl. Catal. B Environ. 2021, 286, 119902.

    CAS  Google Scholar 

  17. Yan, K. L.; Qin, J. F.; Liu, Z. Z.; Dong, B.; Chi, J. Q.; Gao, W. K.; Lin, J. H.; Chai, Y. M.; Liu, C. G. Organic-inorganic hybrids-directed ternary NiFeMoS anemone-like nanorods with scaly surface supported on nickel foam for efficient overall water splitting. Chem. Eng. J. 2018, 334, 922–931.

    CAS  Google Scholar 

  18. Wang, M.; Zhang, L.; Pan, J. L.; Huang, M. R.; Zhu, H. W. A highly efficient Fe-doped Ni3S2 electrocatalyst for overall water splitting. Nano Res. 2021, 14, 4740–4747.

    CAS  Google Scholar 

  19. Yue, K. H.; Liu, J. L.; Xia, C. F.; Zhan, K.; Wang, P.; Wang, X. Y.; Yan, Y.; Xia, B. Y. Controllable synthesis of multidimensional carboxylic acid-based NiFe MOFs as efficient electrocatalysts for oxygen evolution. Mater. Chem. Front. 2021, 5, 7191–7198.

    CAS  Google Scholar 

  20. Liu, M.; Kong, L. J.; Wang, X. M.; He, J.; Zhang, J. J.; Zhu, J.; Bu, X. H. Deciphering of advantageous electrocatalytic water oxidation behavior of metal-organic framework in alkaline media. Nano Res. 2021, 14, 4680–4688.

    CAS  Google Scholar 

  21. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    CAS  Google Scholar 

  22. Pan, Y.; Liu, S. J.; Sun, K. A.; Chen, X.; Wang, B.; Wu, K. L.; Cao, X.; Cheong, W. C.; Shen, R. G.; Han, A. J. et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-air battery. Angew. Chem., Int. Ed. 2018, 57, 8614–8618.

    CAS  Google Scholar 

  23. Pan, Y.; Chen, Y. J.; Wu, K. L.; Chen, Z.; Liu, S. J.; Cao, X.; Cheong, W. C.; Meng, T.; Luo, J.; Zheng, L. R. et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun. 2019, 10, 4290.

    Google Scholar 

  24. Sivanantham, A.; Ganesan, P.; Vinu, A.; Shanmugam, S. Surface activation and reconstruction of non-oxide-based catalysts through in situ electrochemical tuning for oxygen evolution reactions in alkaline media. ACS Catal. 2020, 10, 463–493.

    CAS  Google Scholar 

  25. Chung, D. Y.; Lopes, P. P.; Martins, P. F. B. D.; He, H. Y.; Kawaguchi, T.; Zapol, P.; You, H.; Tripkovic, D.; Strmcnik, D.; Zhu, Y. S. et al. Dynamic stability of active sites in hydr(oxy) oxides for the oxygen evolution reaction. Nat. Energy 2020, 5, 222–230.

    Google Scholar 

  26. Lopes, P. P.; Chung, D. Y.; Rui, X.; Zheng, H.; He, H. Y.; Martins, P. F. B. D.; Strmcnik, D.; Stamenkovic, V. R.; Zapol, P.; Mitchell, J. F. et al. Dynamically stable active sites from surface evolution of perovskite materials during the oxygen evolution reaction. J. Am. Chem. Soc. 2021, 143, 2741–2750.

    CAS  Google Scholar 

  27. Xu, Q. C.; Jiang, H.; Duan, X. Z.; Jiang, Z.; Hu, Y. J.; Boettcher, S. W.; Zhang, W. Y.; Guo, S. J.; Li, C. Z. Fluorination-enabled reconstruction of NiFe electrocatalysts for efficient water oxidation. Nano Lett. 2021, 21, 492–499.

    CAS  Google Scholar 

  28. Wang, J.; Kim, S. J.; Liu, J. P.; Gao, Y.; Choi, S.; Han, J.; Shin, H.; Jo, S.; Kim, J.; Ciucci, F. et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 2021, 4, 212–222.

    Google Scholar 

  29. Anantharaj, S.; Kundu, S.; Noda, S. “The Fe effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514.

    CAS  Google Scholar 

  30. Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

    CAS  Google Scholar 

  31. Zhou, Y. N.; Yu, W. L.; Cao, Y. N.; Zhao, J.; Dong, B.; Ma, Y.; Wang, F. L.; Fan, R. Y.; Zhou, Y. L.; Chai, Y. M. S-doped nickel-iron hydroxides synthesized by room-temperature electrochemical activation for efficient oxygen evolution. Appl. Catal. B Environ. 2021, 292, 120150.

    CAS  Google Scholar 

  32. Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648.

    CAS  Google Scholar 

  33. Stevens, M. B.; Trang, C. D. M.; Enman, L. J.; Deng, J.; Boettcher, S. W. Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 2017, 139, 11361–11364.

    CAS  Google Scholar 

  34. Bai, L. C.; Hsu, C. S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. L. A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 14190–14199.

    CAS  Google Scholar 

  35. Sun, Y. M.; Chen, G.; Xi, S. B.; Xu, Z. J. Catalytically influential features in transition metal oxides. ACS Catal. 2021, 11, 13947–13954.

    CAS  Google Scholar 

  36. Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

    CAS  Google Scholar 

  37. Bao, F. X.; Kemppainen, E.; Dorbandt, I.; Xi, F. X.; Bors, R.; Maticiuc, N.; Wenisch, R.; Bagacki, R.; Schary, C.; Michalczik, U. et al. Host, suppressor, and promoter—The roles of Ni and Fe on oxygen evolution reaction activity and stability of NiFe alloy thin films in alkaline media. ACS Catal. 2021, 11, 10537–10552.

    CAS  Google Scholar 

  38. Enman, L. J.; Burke, M. S.; Batchellor, A. S.; Boettcher, S. W. Effects of intentionally incorporated metal cations on the oxygen evolution electrocatalytic activity of nickel (oxy)hydroxide in alkaline media. ACS Catal. 2016, 6, 2416–2423.

    CAS  Google Scholar 

  39. Wang, J. Y.; Ji, L. L.; Chen, Z. F. In situ rapid formation of a nickel-iron-based electrocatalyst for water oxidation. ACS Catal. 2016, 6, 6987–6992.

    CAS  Google Scholar 

  40. Che, Q. J.; Li, Q.; Tan, Y.; Chen, X. H.; Xu, X.; Chen, Y. S. One-step controllable synthesis of amorphous (Ni-Fe)Sx/NiFe(OH)y hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density. Appl. Catal. B Environ. 2019, 246, 337–348.

    CAS  Google Scholar 

  41. Che, Q. J.; Li, Q.; Chen, X. H.; Tan, Y.; Xu, X. Assembling amorphous (Fe-Ni)Cox-OH/Ni3S2 nanohybrids with S-vacancy and interfacial effects as an ultra-highly efficient electrocatalyst: Inner investigation of mechanism for alkaline water-to-hydrogen/oxygen conversion. Appl. Catal. B Environ. 2020, 263, 118338.

    CAS  Google Scholar 

  42. Niu, S.; Jiang, W. J.; Wei, Z. X.; Tang, T.; Ma, J. M.; Hu, J. S.; Wan, L. J. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 2019, 141, 7005–7013.

    CAS  Google Scholar 

  43. Yang, M.; Xie, J. Y.; Yu, W. L.; Cao, Y. N.; Dong, B.; Zhou, Y. N.; Wang, F. L.; Li, Q. Z.; Zhou, Y. L.; Chai, Y. M. Fe(Co)OOH dynamically stable interface based on self-sacrificial reconstruction for long-term electrochemical water oxidation. ACS Appl. Mater. Interfaces 2021, 13, 17450–17458.

    CAS  Google Scholar 

  44. Chi, J.; Yu, H. M.; Jiang, G.; Jia, J.; Qin, B. W.; Yi, B. L.; Shao, Z. G. Construction of orderly hierarchical FeOOH/NiFe layered double hydroxides supported on cobaltous carbonate hydroxide nanowire arrays for a highly efficient oxygen evolution reaction. J. Mater. Chem. A 2018, 6, 3397–3401.

    CAS  Google Scholar 

  45. Fan, R. Y.; Zhou, Y. N.; Li, M. X.; Xie, J. Y.; Yu, W. L.; Chi, J. Q.; Wang, L.; Yu, J. F.; Chai, Y. M.; Dong, B. In situ construction of Fe(Co)OOH through ultra-fast electrochemical activation as real catalytic species for enhanced water oxidation. Chem. Eng. J. 2021, 426, 131943.

    CAS  Google Scholar 

  46. Bao, W. W.; Xiao, L.; Zhang, J. J.; Deng, Z. F.; Yang, C. M.; Ai, T. T.; Wei, X. L. Interface engineering of NiV-LDH@FeOOH heterostructures as high-performance electrocatalysts for oxygen evolution reaction in alkaline conditions. Chem. Commun. 2020, 56, 9360–9363.

    CAS  Google Scholar 

  47. Pan, J. J.; Hao, S. Y.; Zhang, X. W.; Huang, R. X. In situ growth of Fe and Nb co-doped β-Ni(OH)2 nanosheet arrays on nickel foam for an efficient oxygen evolution reaction. Inorg. Chem. Front. 2020, 7, 3465–3474.

    CAS  Google Scholar 

  48. Jin, Y. S.; Huang, S. L.; Yue, X.; Du, H. Y.; Shen, P. K. Mo- and Fe-modified Ni(OH)2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction. ACS Catal. 2018, 8, 2359–2363.

    CAS  Google Scholar 

  49. Ha, J.; Kim, M.; Kim, Y. T.; Choi, J. Ni0.67Fe0.33 hydroxide incorporated with oxalate for highly efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 2021, 13, 42870–42879.

    CAS  Google Scholar 

  50. Liao, H. X.; Tan, P. F.; Dong, R.; Jiang, M.; Hu, X. Y.; Lu, L. L.; Wang, Y.; Liu, H. Q.; Liu, Y.; Pan, J. Insight into the amorphous nickel-iron (oxy)hydroxide catalyst for efficient oxygen evolution reaction. J. Colloid Interface Sci. 2021, 591, 307–313.

    CAS  Google Scholar 

  51. Yu, L.; Wu, L. B.; McElhenny, B.; Song, S. W.; Luo, D.; Zhang, F. H.; Yu, Y.; Chen, S.; Ren, Z. F. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 2020, 13, 3439–3446.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52174283), the Shandong Provincial Natural Science Foundation (No. ZR2020MB044), and Postgraduate Innovation Engineering Project of China University of Petroleum (East China) (No. YCX2021147).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Ming Chai or Bin Dong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, RY., Zhao, HY., Zhao, ZY. et al. Effective regulation mechanisms of Fe-Ni(oxy)hydroxide: Ni-rich heteroatomic bonding (Ni-O-Fe-O-Ni) is essential. Nano Res. 16, 12026–12034 (2023). https://doi.org/10.1007/s12274-022-5019-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5019-6

Keywords

Navigation