Skip to main content
Log in

Tuning coherent phonon dynamics in two-dimensional phenylethylammonium lead bromide perovskites

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Organic-inorganic layered perovskites are two-dimensional quantum well layers in which the layers of lead halide octahedra are stacked between the organic cation layers. The packing geometry of the soft organic molecules and the stiff ionic crystals induce structural deformation of the inorganic octahedra, generating complex lattice dynamics. Especially, the dielectric confinement and ionic sublattice lead to strong coupling between the photogenerated excitons and the phonons from the polar lattice which intensively affects the properties for device applications. The anharmonicity and dynamic disorder from the organic cations participate in the relaxation dynamics coupled with excitations. However, a detailed understanding of this underlying mechanism remains obscure. This work investigates the electron-optical phonon coupling dynamics by employing ultrafast pump-probe transient absorption spectroscopy. The activated different optical phonon modes are observed via systematic studies of (PEA)2PbBr4 perovskite films on the ultrafast lattice vibrational dynamics. The experimental results indicate that solvent engineering has a significant influence on lattice vibrational modes and coherent phonon dynamics. This work provides fresh insights into electron-optical phonon coupling for emergent optoelectronics development based on layered perovskites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M. Conducting tin halides with a layered organic-based perovskite structure. Nature 1994, 369, 467–469.

    Article  CAS  Google Scholar 

  2. Fu, Y. P.; Zhu, H. M.; Chen, J.; Hautzinger, M. P.; Zhu, X. Y.; Jin, S. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 2019, 4, 169–188.

    Article  CAS  Google Scholar 

  3. Cui, M. H.; Qin, C. C.; Jiang, Y. Z.; Yuan, M. J.; Xu, L. H.; Song, D. D.; Jiang, Y. H.; Liu, Y. F. Direct observation of competition between amplified spontaneous emission and auger recombination in quasi-two-dimensional perovskites. J. Phys. Chem. Lett. 2020, 11, 5734–5740.

    Article  CAS  Google Scholar 

  4. Jiang, Y. Z.; Cui, M. H.; Li, S. S.; Sun, C. J.; Huang, Y. M.; Wei, J. L.; Zhang, L.; Lv, M.; Qin, C. C.; Liu, Y. F. et al. Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun. 2021, 12, 336.

    Article  CAS  Google Scholar 

  5. Jiang, Y. Z.; Qin, C. C.; Cui, M. H.; He, T. W.; Liu, K. K.; Huang, Y. M.; Luo, M. H.; Zhang, L.; Xu, H. Y.; Li, S. S. et al. Spectra stable blue perovskite light-emitting diodes. Nat. Commun. 2019, 10, 1868.

    Article  Google Scholar 

  6. Qin, Y.; Zhong, H. J.; Intemann, J. J.; Leng, S. F.; Cui, M. H.; Qin, C. C.; Xiong, M.; Liu, F.; Jen, A. K. Y.; Yao, K. 2D perovskites: Coordination engineering of single-crystal precursor for phase control in ruddlesden-popper perovskite solar cells (Adv. Energy Mater. 16/2020). Adv. Energy Mater. 2020, 10, 2070072.

    Article  CAS  Google Scholar 

  7. Jin, Y.; Wang, Z. K.; Yuan, S.; Wang, Q.; Qin, C. C.; Wang, K. L.; Dong, C.; Li, M.; Liu, Y. F.; Liao, L. S. Synergistic effect of dual ligands on stable blue quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 2020, 30, 1908339.

    Article  CAS  Google Scholar 

  8. Sun, C. J.; Jiang, Y. Z.; Cui, M. H.; Qiao, L.; Wei, J. L.; Huang, Y. M.; Zhang, L.; He, T. W.; Li, S. S.; Hsu, H. Y. et al. High-performance large-area quasi-2D perovskite light-emitting diodes. Nat. Commun. 2021, 12, 2207.

    Article  CAS  Google Scholar 

  9. He, T. W.; Li, S. S.; Jiang, Y. Z.; Qin, C. C.; Cu, M. H.; Qiao, L.; Xu, H. Y.; Yang, J.; Long, R.; Wang, H. H. et al. Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape. Nat. Commun. 2020, 11, 1672.

    Article  CAS  Google Scholar 

  10. Zhang, Y. L.; Wen, J. L.; Xu, Z.; Liu, D. L.; Yang, T. H.; Niu, T. Q.; Luo, T.; Lu, J.; Fang, J. J.; Chang, X. M. et al. Effective phase-alignment for 2D halide perovskites incorporating symmetric diammonium ion for photovoltaics. Adv. Sci. 2021, 8, 2001433.

    Article  CAS  Google Scholar 

  11. Quan, L. N.; Park, Y.; Guo, P. J.; Gao, M. Y.; Jin, J. B.; Huang, J. M.; Copper, J. K.; Schwartzberg, A.; Schaller, R.; Limmer, D. T. et al. Vibrational relaxation dynamics in layered perovskite quantum wells. Proc. Natl. Acad. Sci. USA 2021, 118, e2104425118.

    Article  CAS  Google Scholar 

  12. Lanzillotti-Kimura, N. D.; O’Brien, K. P.; Rho, J.; Suchowski, H.; Yin, X. B.; Zhang, X. Polarization-controlled coherent phonon generation in acoustoplasmonic metasurfaces. Phys. Rev. B 2018, 97, 235403.

    Article  CAS  Google Scholar 

  13. Baldini, E.; Dominguez, A.; Palmieri, T.; Cannelli, O.; Rubio, A.; Ruello, P.; Chergui, M. Exciton control in a room temperature bulk semiconductor with coherent strain pulses. Sci. Adv. 2019, 5, eaax2937.

    Article  CAS  Google Scholar 

  14. Baldini, E.; Palmieri, T.; Dominguez, A.; Ruello, P.; Rubio, A.; Chergui, M. Phonon-driven selective modulation of exciton oscillator strengths in anatase TiO2 nanoparticles. Nano Lett. 2018, 18, 5007–5014.

    Article  CAS  Google Scholar 

  15. Fu, J. H.; Li, M. J.; Solanki, A.; Xu, Q.; Lekina, Y.; Ramesh, S.; Shen, Z. X.; Sum, T. C. Electronic states modulation by coherent optical phonons in 2D halide perovskites. Adv. Mater. 2021, 33, 2006233.

    Article  CAS  Google Scholar 

  16. Zhang, K. N.; Niu, M. S.; Jiang, Z. N.; Chen, Z. H.; Wang, T.; Wei, M. M.; Qin, C. C.; Feng, L.; Qin, W.; So, S. K. et al. Multiple temporal-scale photocarrier dynamics induced by synergistic effects of fluorination and chlorination in highly efficient nonfullerene organic solar cells. Solar RRL 2020, 4, 1900552.

    Article  Google Scholar 

  17. Wang, T.; Niu, M. S.; Guo, J. J.; Zhang, K. N.; Wen, Z. C.; Liu, J. Q.; Qin, C. C.; Hao, X. T. 3D charge transport pathway in organic solar cells via incorporation of discotic liquid crystal columns. Solar RRL 2020, 4, 2070056.

    Article  Google Scholar 

  18. Tian, Y.; Qian, X. Y.; Qin, C. C.; Cui, M. H.; Li, Y. Q.; Ye, Y. C.; Wang, J. K.; Wang, W. J.; Tang, J. X. Modulating low-dimensional domains of self-assembling quasi-2D perovskites for efficient and spectra-stable blue light-emitting diodes. Chem. Eng. J. 2021, 415, 129088.

    Article  CAS  Google Scholar 

  19. Du, Q.; Zhu, C.; Yin, Z. X.; Na, G. R.; Cheng, C. T.; Han, Y.; Liu, N.; Niu, X. X.; Zhou, H. P.; Chen, H. D. et al. Stacking effects on electron-phonon coupling in layered hybrid perovskites via microstrain manipulation. ACS Nano 2020, 14, 5806–5817.

    Article  CAS  Google Scholar 

  20. Tao, W. J.; Zhang, C.; Zhou, Q. H.; Zhao, Y. D.; Zhu, H. M. Momentarily trapped exciton polaron in two-dimensional lead halide perovskites. Nat. Commun. 2021, 12, 1400.

    Article  CAS  Google Scholar 

  21. Li, F. C.; Zhou, S. J.; Yuan, J. Y.; Qin, C. C.; Yang, Y. G.; Shi, J. W.; Ling, X. F.; Li, Y. Y.; Ma, W. L. Perovskite quantum dot solar cells with 15.6% efficiency and improved stability enabled by an α-CsPbI3/FAPbI3 bilayer structure. ACS Energy Lett. 2019, 4, 2571–2578.

    Article  CAS  Google Scholar 

  22. Ren, Z. Q.; Wang, N.; Wei, P. C.; Cui, M. H.; Li, X.; Qin, C. C. Ultraviolet-ozone modification on TiO2 surface to promote both efficiency and stability of low-temperature planar perovskite solar cells. Chem. Eng. J. 2020, 393, 124731.

    Article  CAS  Google Scholar 

  23. Thouin, F.; Valverde-Chávez, D. A.; Quarti, C.; Cortecchia, D.; Bargigia, I.; Beljonne, D.; Petrozza, A.; Silva, C.; Kandada, A. R. S. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater. 2019, 18, 349–356.

    Article  CAS  Google Scholar 

  24. Giovanni, D.; Chong, W. K.; Dewi, H. A.; Thirumal, K.; Neogi, I.; Ramesh, R.; Mhaisalkar, S.; Mathews, N.; Sum, T. C. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites. Sci. Adv. 2016, 2, e1600477.

    Article  Google Scholar 

  25. Giovanni, D.; Chong, W. K.; Liu, Y. Y. F.; Dewi, H. A.; Yin, T. T.; Lekina, Y.; Shen, Z. X.; Mathews, N.; Gan, C. K.; Sum, T. C. Coherent spin and quasiparticle dynamics in solution-processed layered 2D lead halide perovskites. Adv. Sci. 2018, 5, 1800664.

    Article  Google Scholar 

  26. Ni, L. M.; Huynh, U.; Cheminal, A.; Thomas, T. H.; Shivanna, R.; Hinrichsen, T. F.; Ahmad, S.; Sadhanala, A.; Rao, A. Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells. ACS Nano 2017, 11, 10834–10843.

    Article  CAS  Google Scholar 

  27. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

    Article  CAS  Google Scholar 

  28. Moot, T.; Marshall, A. R.; Wheeler, L. M.; Habisreutinger, S. N.; Schloemer, T. H.; Boyd, C. C.; Dikova, D. R.; Pach, G. F.; Hazarika, A.; McGehee, M. D. et al. CsI-antisolvent adduct formation in all-inorganic metal halide perovskites. Adv. Energy Mater. 2020, 10, 1903365.

    Article  CAS  Google Scholar 

  29. Caiazzo, A.; Datta, K.; Jiang, J. K.; Gélvez-Rueda, M. C.; Li, J. Y.; Ollearo, R.; Vicent-Luna, J. M.; Tao, S. X.; Grozema, F. C.; Wienk, M. M. et al. Effect of Co-solvents on the crystallization and phase distribution of mixed-dimensional perovskites. Adv. Energy Mater. 2021, 11, 2102144.

    Article  CAS  Google Scholar 

  30. Deng, W.; Jin, X. C.; Lv, Y.; Zhang, X. J.; Zhang, X H.; Jie, J. S. 2D ruddlesden-popper perovskite nanoplate based deep-blue light-emitting diodes for light communication. Adv. Funct. Mater. 2019, 29, 1903861.

    Article  Google Scholar 

  31. Zhang, Y. H.; Yin, J.; Parida, M. R.; Ahmed, G. H.; Pan, J.; Bakr, O. M.; Brédas, J. L.; Mohammed, O. F. Direct-indirect nature of the bandgap in lead-free perovskite nanocrystals. J. Phys. Chem. Lett. 2017, 8, 3173–3177.

    Article  CAS  Google Scholar 

  32. Gauthron, K.; Lauret, J. S.; Doyennette, L.; Lanty, G.; Al Choueiry, A.; Zhang, S. J.; Brehier, A.; Largeau, L.; Mauguin, O.; Bloch, J. et al. Optical spectroscopy of two-dimensional layered (C6H5C2H4−NH3)2−PbI4 perovskite. Opt. Express 2010, 18, 5912–5919.

    Article  CAS  Google Scholar 

  33. Ema, K.; Umeda, K.; Toda, M.; Yajima, C.; Arai, Y.; Kunugita, H.; Wolverson, D.; Davies, J. J. Huge exchange energy and fine structure of excitons in an organic-inorganic quantum well material. Phys. Rev. B 2006, 73, 241310.

    Article  Google Scholar 

  34. Straus, D. B.; Parra, S. H.; Iotov, N.; Gebhardt, J.; Rappe, A. M.; Subotnik, J. E.; Kikkawa, J. M.; Kagan, C. R. Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites. J. Am. Chem. Soc. 2016, 138, 13798–13801.

    Article  CAS  Google Scholar 

  35. Fujisawa, J. I.; Ishihara, T. Excitons and biexcitons bound to a positive ion in a bismuth-doped inorganic-organic layered lead iodide semiconductor. Phys. Rev. B 2004, 70, 205330.

    Article  Google Scholar 

  36. Neutzner, S.; Thouin, F.; Cortecchia, D.; Petrozza, A.; Silva, C.; Kandada, A. R. S. Exciton-polaron spectral structures in two dimensional hybrid lead-halide perovskites. Phys. Rev. Mater. 2018, 2, 064605.

    Article  CAS  Google Scholar 

  37. Kataoka, T.; Kondo, T.; Ito, R.; Sasaki, S.; Uchida, K.; Miura, N. Magneto-optical study on excitonic spectra in (C6H13NH3)2PbI4. Phys. Rev. B 1993, 47, 2010–2018.

    Article  CAS  Google Scholar 

  38. Thouin, F.; Neutzner, S.; Cortecchia, D.; Dragomir, V. A.; Soci, C.; Salim, T.; Lam, Y. M.; Leonelli, R.; Petrozza, A.; Kandada, A. R. S. et al. Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder. Phys. Rev. Mater. 2018, 2, 034001.

    Article  CAS  Google Scholar 

  39. Fischer, A. J.; Shan, W.; Song, J. J.; Chang, Y. C.; Horning, R.; Goldenberg, B. Temperature-dependent absorption measurements of excitons in GaN epilayers. Appl. Phys. Lett. 1997, 71, 1981–1983.

    Article  CAS  Google Scholar 

  40. Huang, L. Y.; Lambrecht, W. R. L. Lattice dynamics in perovskite halides CsSn X3 with X = I, Br, Cl. Phys. Rev. B 2014, 90, 195201.

    Article  Google Scholar 

  41. Debnath, T.; Sarker, D.; Huang, H.; Han, Z. K.; Dey, A.; Polavarapu, L.; Levchenko, S. V.; Feldmann, J. Coherent vibrational dynamics reveals lattice anharmonicity in organic-inorganic halide perovskite nanocrystals. Nat. Commun. 2021, 12, 2629.

    Article  CAS  Google Scholar 

  42. Dhanabalan, B.; Leng, Y. C.; Biffi, G.; Lin, M. L.; Tan, P. H.; Infante, I.; Manna, L.; Arciniegas, M. P.; Krahne, R. Directional anisotropy of the vibrational modes in 2D-layered perovskites. ACS Nano 2020, 14, 4689–4697.

    Article  CAS  Google Scholar 

  43. Ivanovska, T.; Quarti, C.; Grancini, G.; Petrozza, A.; De Angelis, F.; Milani, A.; Ruani, G. Vibrational response of methylammonium lead iodide: From cation dynamics to phonon-phonon interactions. ChemSusChem 2016, 9, 2994–3004.

    Article  CAS  Google Scholar 

  44. Debernardi, A. Anharmonic effects in the phonons of III–V semiconductors: First principles calculations. Soild State Commun. 1999, 113, 1–10.

    Article  CAS  Google Scholar 

  45. Jiang, X. T.; Liu, S. X.; Liang, W. Y.; Luo, S. J.; He, Z. L.; Ge, Y. Q.; Wang, H. D.; Cao, R.; Zhang, F.; Wen, Q. et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev. 2018, 12, 1700229.

    Article  Google Scholar 

  46. Lim, G. K.; Chen, Z. L.; Clark, J.; Goh, R. G. S.; Ng, W. H.; Tan, H. W.; Friend, R. H.; Ho, P. K. H.; Chua, L. L. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nat. Photonics 2011, 5, 554–560.

    Article  CAS  Google Scholar 

  47. Liu, X. F.; Guo, Q. B.; Qiu, J. R. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater. 2017, 29, 1605886.

    Article  Google Scholar 

  48. Zhang, H.; Virally, S.; Bao, Q. L.; Ping, L. K.; Massar, S.; Godbout, N.; Kockaert, P. Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 2012, 37, 1856–1858.

    Article  CAS  Google Scholar 

  49. Lu, L.; Liang, Z. M.; Wu, L. M.; Chen, Y. X.; Song, Y. F.; Dhanabalan, S. C.; Ponraj, J. S.; Dong, B. Q.; Xiang, Y. J.; Xing, F. et al. Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability. Laser Photonics Rev. 2018, 12, 1700221.

    Article  Google Scholar 

  50. Gramlich, M.; Bohn, B. J.; Tong, Y.; Polavarapu, L.; Feldmann, J.; Urban, A. S. Thickness-dependence of exciton-exciton annihilation in halide perovskite nanoplatelets. J. Phys. Chem. Lett. 2020, 11, 5361–5366.

    Article  CAS  Google Scholar 

  51. Qin, C. C.; Cui, M. H.; Song, D. D.; He, W. Ultrafast multiexciton Auger recombination of CdSeS. Acta Phys. Sin. 2019, 68, 107801.

    Article  Google Scholar 

  52. Fu, J. H.; Qiang, X.; Han, G. F.; Wu, B.; Huan, C. H. A.; Leek, M. L.; Sum, T. C. Hot carrier cooling mechanisms in halide perovskites. Nat. Commun. 2017, 8, 1300.

    Article  Google Scholar 

  53. Yin, J.; Maity, P.; Naphade, R.; Cheng, B.; He, J. H.; Bakr, O. M.; Brédas, J. L.; Mohammed, O. F. Tuning hot carrier cooling dynamics by dielectric confinement in two-dimensional hybrid perovskite crystals. ACS Nano 2019, 13, 12621–12629.

    Article  CAS  Google Scholar 

  54. Begum, R.; Parida, M. R.; Abdelhady, A. L.; Murali, B.; Alyami, N. M.; Ahmed, G. H.; Hedhili, M. N.; Bakr, O. M.; Mohammed, O. F. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping. J. Am. Chem. Soc. 2017, 139, 731–737.

    Article  CAS  Google Scholar 

  55. Hao, F.; Stoumpos, C. C.; Guo, P. J.; Zhou, N. J.; Marks, T. J.; Chang, R. P. H.; Kanatzidis, M. G. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 11445–11452.

    Article  CAS  Google Scholar 

  56. Yang, M. J.; Li, Z.; Reese, M. O.; Reid, O. G.; Kim, D. H.; Siol, S.; Klein, T. R.; Yan, Y. F.; Berry, J. J.; van Hest, M. F. A. M. et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat. Energy 2017, 2, 17038.

    Article  CAS  Google Scholar 

  57. Cheng, P. R.; Xu, Z.; Li, J. B.; Liu, Y. C.; Fan, Y. Y.; Yu, L. Y.; Smilgies, D. M.; Müller, C.; Zhao, K.; Liu, S. F. Highly efficient ruddlesden-popper halide perovskite PA2MA4Pb5I16 solar cells. ACS Energy Lett. 2018, 3, 1975–1985.

    Article  CAS  Google Scholar 

  58. Seo, Y. H.; Kim, E. C.; Cho, S. P.; Kim, S. S.; Na, S. I. High-performance planar perovskite solar cells: Influence of solvent upon performance. Appl. Mater. Today 2017, 9, 598–604.

    Article  Google Scholar 

  59. Hwang, B.; Park, Y.; Lee, J. S. Impact of grain size on the optoelectronic performance of 2D Ruddlesden-Popper perovskite-based photodetectors. J. Mater. Chem. C 2021, 9, 110–116.

    Article  CAS  Google Scholar 

  60. Torchyniuk, P. V.; V’yunov, O. I.; Kovalenko, L. L.; Ishchenko, A. A.; Kurdyukova, I. V.; Belous, A. G. Influence of solvent on stability and electrophysical properties of organic-inorganic perovskites films CH3NH3PbI3. Theor. Exp. Chem. 2021, 57, 113–120.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. U1804261, 61627818, 12074104, 11804084, 62075058, and 11827806), Natural Science Foundation of Henan Province (No. 222300420057), the Outstanding Youth Foundation of Henan Normal University (No. 20200171), and the Young Backbone Teacher Training Program in Higher Education of Henan Province (No. 2019GGJS065).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaochao Qin, Yuhai Jiang or Yufang Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, M., Qin, C., Zhou, Z. et al. Tuning coherent phonon dynamics in two-dimensional phenylethylammonium lead bromide perovskites. Nano Res. 16, 3408–3414 (2023). https://doi.org/10.1007/s12274-022-4911-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4911-4

Keywords

Navigation