Skip to main content
Log in

Multi-hierarchical flexible composites towards superior fire safety and electromagnetic interference shielding

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Vast amounts of electromagnetic waves are generated in modern society, which severely endanger human health and cause instrument disturbance. Furthermore, practical application of electromagnetic shielding polymer-based materials aspires to flame retardancy. Herein, cellulose acetate butyrate modified ammonium polyphosphate (CAPP) and phosphoramide flame retardant decorated short carbon fiber (MSCF) were synthesized separately and then simultaneously blended into thermoplastic polyurethane (TPU) to prepare a series of flame retardant TPU composites. Then, the multi-hierarchical flexible TPU/CAPP/MSCF composites were fabricated via our self-developed air-assisted thermocompression method. The results revealed that the TPU/CAPP/MSCF showed improved thermal stability. Moreover, the TPU/10CA/2.5F incorporated with 10.0 wt.% CAPP and 2.5 wt.% MSCF respectively exhibited 77.8% and 58.6% reduction in peak of heat release rate (PHRR) and total heat release (THR), compared to those of pure TPU. In addition, the TPU/10CA/2.5F passed the UL-94 V-0 rating test and achieved a higher limit oxygen index (LOI) (27.3%) than pure TPU (21.7%). In the case of electromagnetic interference shielding effectiveness (EMI SE), the TPU/10CA/10.0F-SW with 10 wt.% CAPP and 10 wt.% MSCF dispersed in the surface layer and Ti3C2Tx MXene intercalated in the interlayer exhibited EMI SE of 43.8 dB in X band and 32.0 dB in K band. Summarily, synergistic effect between CAPP and MSCF together with scattered and multiply adsorbed effect of MSCF, MXene and CAPP was responsible for fire safety and EMI shielding property improvements. This work provides a fascinating strategy for fabricating multi-hierarchical flexible TPU composites with outstanding flame retardant and EMI shielding performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao, C. Q.; Shi, Y. Q.; Chen, Y. J.; Zhu, S. C.; Feng, Y. Z.; Lv, Y. C.; Yang, F. Q.; Liu, M. H.; Shui, W. Constructing segregated polystyrene composites for excellent fire resistance and electromagnetic wave shielding. J. Colloid Interface Sci. 2022, 606, 1193–1204.

    Article  CAS  Google Scholar 

  2. Sun, Z. P.; Chen, J. L.; Jia, X. C.; Wang, G. Q.; Shen, B.; Zheng, W. G. Humidification of high-performance and multifunctional polyimide/carbon nanotube composite foams for enhanced electromagnetic shielding. Mater. Today Phys. 2021, 21, 100521.

    Article  CAS  Google Scholar 

  3. Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

    CAS  Google Scholar 

  4. Shen, B.; Zhai, W. T.; Zheng, W. G. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 2014, 24, 4542–4548.

    Article  CAS  Google Scholar 

  5. Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

    Article  CAS  Google Scholar 

  6. Pan, M. Z.; Mei, C. T.; Du, J.; Li, G. C. Synergistic effect of Nano silicon dioxide and ammonium polyphosphate on flame retardancy of wood fiber-polyethylene composites. Compos. Part A:Appl. Sci. Manuf. 2014, 66, 128–134.

    Article  CAS  Google Scholar 

  7. Savas, L. A.; Deniz, T. K.; Tayfun, U.; Dogan, M. Effect of microcapsulated red phosphorus on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral. Polym. Degrad. Stabil. 2017, 135, 121–129.

    Article  CAS  Google Scholar 

  8. Wilke, A.; Langfeld, K.; Ulmer, B.; Andrievici, V.; Hörold, A.; Limbach, P.; Bastian, M.; Schartel, B. Halogen-free multicomponent flame retardant thermoplastic styrene-ethylene-butylene-styrene elastomers based on ammonium polyphosphate-expandable graphite synergy. Ind. Eng. Chem. Res. 2017, 56, 8251–8263.

    Article  CAS  Google Scholar 

  9. Sut, A.; Metzsch-Zilligen, E.; Großhauser, M.; Pfaendner, R.; Schartel, B. Synergy between melamine cyanurate, melamine polyphosphate and aluminum diethylphosphinate in flame retarded thermoplastic polyurethane. Polym. Test. 2019, 74, 196–204.

    Article  CAS  Google Scholar 

  10. Zhu, M.; Zhang, Y.; Sheng, H. B.; Wang, B. B.; Hu, Y. Effect carbon black microencapsulated ammonium polyphosphate on the flame retardancy and mechanical properties of polyurethane composites. Polym. Plast. Technol. Mater. 2020, 59, 83–94.

    CAS  Google Scholar 

  11. Gao, W. Y.; Qian, X. D.; Wang, S. J. Preparation of hybrid silicon materials microcapsulated ammonium polyphosphate and its application in thermoplastic polyurethane. J. Appl. Polym. Sci. 2018, 135, 45742.

    Article  Google Scholar 

  12. Bahri, Z. E.; Taverdet, J. L. Preparation and optimization of 2,4-D loaded cellulose derivatives microspheres by solvent evaporation technique. J. Appl. Polym. Sci. 2007, 103, 2742–2751.

    Article  Google Scholar 

  13. Wang, B. B.; Tang, Q. B.; Hong, N. N.; Song, L.; Wang, L.; Shi, Y. Q.; Hu, Y. Effect of cellulose acetate butyrate microencapsulated ammonium polyphosphate on the flame retardancy, mechanical, electrical, and thermal properties of intumescent flame-retardant ethylene-vinyl acetate copolymer/microencapsulated ammonium polyphosphate/polyamide-6 blends. ACS Appl. Mater. Interfaces 2011, 3, 3754–3761.

    Article  CAS  Google Scholar 

  14. Kuzhir, P.; Paddubskaya, A.; Bychanok, D.; Liubimau, A.; Ortona, A.; Fierro, V.; Celzard, A. 3D-printed, carbon-based, lossy photonic crystals: Is high electrical conductivity the must? Carbon 2021, 171, 484–492.

    Article  CAS  Google Scholar 

  15. Letellier, M.; Macutkevic, J.; Kuzhir, P.; Banys, J.; Fierro, V.; Celzard, A. Electromagnetic properties of model vitreous carbon foams. Carbon 2017, 122, 217–227.

    Article  CAS  Google Scholar 

  16. Kuzhir, P. P.; Paddubskaya, A. G.; Volynets, N. I.; Batrakov, K. G.; Kaplas, T.; Lamberti, P.; Kotsilkova, R.; Lambin, P. Main principles of passive devices based on graphene and carbon films in microwave-THz frequency range. J. Nanophotonics. 2017, 11, 032504.

    Article  Google Scholar 

  17. Lecocq, H.; Garois, N.; Lhost, O.; Girard, P. F.; Cassagnau, P.; Serghei, A. Polypropylene/carbon nanotubes composite materials with enhanced electromagnetic interference shielding performance: Properties and modeling. Compos. Part B:Eng. 2020, 189, 107866.

    Article  CAS  Google Scholar 

  18. Sobha, A. P.; Sreekala, P. S.; Narayanankutty, S. K. Electrical, thermal, mechanical and electromagnetic interference shielding properties of PANI/FMWCNT/TPU composites. Prog. Org. Coat. 2017, 113, 168–174.

    Article  CAS  Google Scholar 

  19. Duan, N. M.; Shi, Z. Y.; Wang, J. L.; Wang, G. L.; Zhang, X. Z. Strong and flexible carbon fiber fabric reinforced thermoplastic polyurethane composites for high-performance EMI shielding applications. Macromol. Mater. Eng. 2020, 305, 1900829.

    Article  CAS  Google Scholar 

  20. Lu, J. Y.; Zhang, Y.; Tao, Y. J.; Wang, B. B.; Cheng, W. H.; Jie, G. X.; Song, L.; Hu, Y. Self-healable castor oil-based waterborne polyurethane/MXene film with outstanding electromagnetic interference shielding effectiveness and excellent shape memory performance. J. Colloid Interface Sci. 2021, 588, 164–174.

    Article  CAS  Google Scholar 

  21. Verma, M.; Chauhan, S. S.; Dhawan, S. K.; Choudhary, V. Graphene nanoplatelets/carbon nanotubes/polyurethane composites as efficient shield against electromagnetic polluting radiations. Compos. Part B:Eng. 2017, 120, 118–127.

    Article  CAS  Google Scholar 

  22. Batrakov, K.; Kuzhir, P.; Maksimenko, S.; Volynets, N.; Voronovich, S.; Paddubskaya, A.; Valusis, G.; Kaplas, T.; Svirko, Y.; Lambin, P. Enhanced microwave-to-terahertz absorption in graphene. Appl. Phys. Lett. 2016, 108, 123101.

    Article  Google Scholar 

  23. Yang, W. X.; Zhao, Z. D.; Wu, K.; Huang, R.; Liu, T. Y.; Jiang, H.; Chen, F.; Fu, Q. Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 2017, 5, 3748–3756.

    Article  CAS  Google Scholar 

  24. Duan, N. M.; Shi, Z. Y.; Wang, Z. H.; Zou, B.; Zhang, C. P.; Wang, J. L.; Xi, J. R.; Zhang, X. S.; Zhang, X. Z.; Wang, G. L. Mechanically robust Ti3C2Tx MXene/carbon fiber fabric/thermoplastic polyurethane composite for efficient electromagnetic interference shielding applications. Mater. Design 2022, 214, 110382.

    Article  CAS  Google Scholar 

  25. Yin, X. C.; Wang, L.; Li, S.; He, G. J.; Yang, Z. T.; Feng, Y. H.; Qu, J. P. Preparation and characterization of carbon fiber/polylactic acid/thermoplastic polyurethane (CF/PLA/TPU) composites prepared by a vane mixer. J. Polym. Eng. 2017, 37, 355–364.

    Article  CAS  Google Scholar 

  26. Lin, S. C.; Ma, C. C. M.; Hsiao, S. T.; Wang, Y. S.; Yang, C. Y.; Liao, W. H.; Li, S. M.; Wang, J. A.; Cheng, T. Y.; Lin, C. W. et al. Electromagnetic interference shielding performance of waterborne polyurethane composites filled with silver nanoparticles deposited on functionalized graphene. Appl. Surf. Sci. 2016, 385, 436–444.

    Article  CAS  Google Scholar 

  27. Li, J. W.; Ding, Y. Q.; Yu, N.; Gao, Q.; Fan, X.; Wei, X.; Zhang, G. C.; Ma, Z. L.; He, X. H. Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon 2020, 158, 45–54.

    Article  CAS  Google Scholar 

  28. Ji, X. Y.; Chen, D. Y.; Shen, J. B.; Guo, S. Y. Flexible and flame-retarding thermoplastic polyurethane-based electromagnetic interference shielding composites. Chem. Eng. J. 2019, 370, 1341–1349.

    Article  CAS  Google Scholar 

  29. Sun, Z. P.; Shen, B.; Li, Y.; Chen, J. L.; Zheng, W. G. Highperformance porous carbon foams via catalytic pyrolysis of modified isocyanate-based polyimide foams for electromagnetic shielding. Nano Res. 2022, 15, 6851–6859.

    Article  CAS  Google Scholar 

  30. Zhang, Y.; Xu, M. K.; Wang, Z. G.; Zhao, T. Y.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 2022, 15, 4916–4924.

    Article  CAS  Google Scholar 

  31. Feng, D.; Wang, Q. Q.; Xu, D. W.; Liu, P. J. Microwave assisted sinter molding of polyetherimide/carbon nanotubes composites with segregated structure for high-performance EMI shielding applications. Compos. Sci. Technol. 2019, 182, 107753.

    Article  CAS  Google Scholar 

  32. Gao, Q. S.; Pan, Y. M.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 2021, 4, 274–285.

    Article  CAS  Google Scholar 

  33. He, L.; Shi, Y. D.; Wang, Q. W.; Chen, D. Y.; Shen, J. B.; Guo, S. Y. Strategy for constructing electromagnetic interference shielding and flame retarding synergistic network in poly(butylene succinate) and thermoplastic polyurethane multilayered composites. Compos. Sci. Technol. 2020, 199, 108324.

    Article  CAS  Google Scholar 

  34. Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

    Article  CAS  Google Scholar 

  35. Liu, C.; Wu, W.; Shi, Y. Q.; Yang, F. Q.; Liu, M. H.; Chen, Z. X.; Yu, B.; Feng, Y. Z. Creating MXene/reduced graphene oxide hybrid towards highly fire safe thermoplastic polyurethane nanocomposites. Compos. Part B:Eng. 2020, 203, 108486.

    Article  CAS  Google Scholar 

  36. Liu, C.; Yao, A. S.; Chen, K. X.; Shi, Y. Q.; Feng, Y. Z.; Zhang, P.; Yang, F. Q.; Liu, M. H.; Chen, Z. X. MXene based core—shell flame retardant towards reducing fire hazards of thermoplastic polyurethane. Compos. Part B: Eng. 2021, 226, 109363.

    Article  CAS  Google Scholar 

  37. Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

    Article  CAS  Google Scholar 

  38. Zhang, Y. L.; Yan, Y.; Qiu, H.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. A mini-review of MXene porous films: Preparation, mechanism and application. J. Mater. Sci. Technol. 2022, 103, 42–49.

    Article  Google Scholar 

  39. Jiao, C. Y.; Deng, Z. M.; Min, P.; Lai, J. J.; Gou, Q. Q.; Gao, R.; Yu, Z. Z.; Zhang, H. B. Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding. Carbon 2022, 198, 179–187.

    Article  CAS  Google Scholar 

  40. Shi, Y. Q.; Liu, C.; Duan, Z. P.; Yu, B.; Liu, M. H.; Song, P. G. Interface engineering of MXene towards super-tough and strong polymer nanocomposites with high ductility and excellent fire safety. Chem. Eng. J. 2020, 399, 125829.

    Article  CAS  Google Scholar 

  41. Shi, Y. Q.; Liu, C.; Liu, L.; Fu, L. B.; Yu, B.; Lv, Y. C.; Yang, F. Q.; Song, P. A. Strengthening, toughing and thermally stable ultra-thin MXene nanosheets/polypropylene nanocomposites via nanoconfinement. Chem. Eng. J. 2019, 378, 122267.

    Article  Google Scholar 

  42. Wei, W. C.; Deng, C.; Huang, S. C.; Wei, Y. X.; Wang, Y. Z. Nickel-Schiff base decorated graphene for simultaneously enhancing the electroconductivity, fire resistance, and mechanical properties of a polyurethane elastomer. J. Mater. Chem. A 2018, 6, 8643–8654.

    Article  CAS  Google Scholar 

  43. Scheibe, B.; Tadyszak, K.; Jarek, M.; Michalak, N.; Kempiński, M.; Lewandowski, M.; Peplińska, B.; Chybczyńska, K. Study on the magnetic properties of differently functionalized multilayered Ti3C2Tx MXenes and Ti-Al-C carbides. Appl. Surf. Sci. 2019, 479, 216–224.

    Article  CAS  Google Scholar 

  44. Shah, S. A.; Habib, T.; Gao, H.; Gao, P.; Sun, W.; Green, M. J.; Radovic, M. Template-free 3D titanium carbide (Ti3C2Tx) MXene particles crumpled by capillary forces. Chem. Commun. 2017, 53, 400–403.

    Article  CAS  Google Scholar 

  45. Liu, L. B.; Xu, Y.; Li, S.; Xu, M. J.; He, Y. T.; Shi, Z. X.; Li, B. A novel strategy for simultaneously improving the fire safety, water resistance and compatibility of thermoplastic polyurethane composites through the construction of biomimetic hydrophobic structure of intumescent flame retardant synergistic system. Compos. Part B: Eng. 2019, 176, 107218.

    Article  CAS  Google Scholar 

  46. Wei, W.; Huang, X. B.; Chen, K. Y.; Tao, Y. M.; Tang, X. Z. Fluorescent organic—inorganic hybrid polyphosphazene microspheres for the trace detection of nitroaromatic explosives. RSC Adv. 2012, 2, 3765–3771.

    Article  CAS  Google Scholar 

  47. Zhang, X. Q.; Xu, H. B.; Fan, X. Y. Grafting of amine-capped cross-linked polyphosphazenes onto carbon fiber surfaces: A novel coupling agent for fiber reinforced composites. RSC Adv. 2014, 4, 12198–12205.

    Article  CAS  Google Scholar 

  48. Tran, M. Q.; Ho, K. K. C.; Kalinka, G.; Shaffer, M. S. P.; Bismarck, A. Carbon fibre reinforced poly(vinylidene fluoride): Impact of matrix modification on fibre/polymer adhesion. Compos. Sci. Technol. 2008, 68, 1766–1776.

    Article  CAS  Google Scholar 

  49. Wu, Z. H.; Pittman, C. U. Jr; Gardner, S. D. Nitric acid oxidation of carbon fibers and the effects of subsequent treatment in refluxing aqueous NaOH. Carbon 1995, 33, 597–605.

    Article  CAS  Google Scholar 

  50. Biniak, S.; Szymański, G.; Siedlewski, J.; Świątkowski, A. The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 1997, 35, 1799–1810.

    Article  CAS  Google Scholar 

  51. Georgiou, P.; Walton, J.; Simitzis, J. Surface modification of pyrolyzed carbon fibres by cyclic voltammetry and their characterization with XPS and dye adsorption. Electrochim. Acta 2010, 55, 1207–1216.

    Article  CAS  Google Scholar 

  52. Crobu, M.; Rossi, A.; Mangolini, F.; Spencer, N. D. Chain-length-identification strategy in zinc polyphosphate glasses by means of XPS and ToF-SIMS. Anal. Bioanal. Chem. 2012, 403, 1415–1432.

    Article  CAS  Google Scholar 

  53. Chen, K. X.; Feng, Y. Z.; Shi, Y. Q.; Wang, H. R.; Fu, L. B.; Liu, M.; Lv, Y. C.; Yang, F. Q.; Yu, B.; Liu, M. H. et al. Flexible and fire safe sandwich structured composites with superior electromagnetic interference shielding properties. Compos. Part A: Appl. Sci. Manuf. 2022, 160, 107070.

    Article  CAS  Google Scholar 

  54. Chen, X. L.; Jiao, C. M.; Zhang, J. Microencapsulation of ammonium polyphosphate with hydroxyl silicone oil and its flame retardance in thermoplastic polyurethane. J. Therm. Anal. Calorim. 2011, 104, 1037–1043.

    Article  CAS  Google Scholar 

  55. Green, J. A review of phosphorus-containing flame retardants. J. Fire Sci. 1992, 10, 470–487.

    Article  CAS  Google Scholar 

  56. Liu, C.; Xu, K.; Shi, Y. Q.; Wang, J. W.; Ma, S. N.; Feng, Y. Z.; Lv, Y. C.; Yang, F. Q.; Liu, M. H.; Song, P. G. Fire-safe, mechanically strong and tough thermoplastic Polyurethane/MXene nanocomposites with exceptional smoke suppression. Mater. Today Phys. 2022, 22, 100607.

    Article  CAS  Google Scholar 

  57. Zhang, Y.; Jing, J.; Liu, T.; Xi, L. D.; Sai, T.; Ran, S. Y.; Fang, Z. P.; Huo, S. Q.; Song, P. G. A molecularly engineered bioderived polyphosphate for enhanced flame retardant, UV-blocking and mechanical properties of poly(lactic acid). Chem. Eng. J. 2021, 411, 128493.

    Article  CAS  Google Scholar 

  58. Yuan, Y.; Wang, W.; Shi, Y. Q.; Song, L.; Ma, C.; Hu, Y. The influence of highly dispersed Cu2O-anchored MoS2 hybrids on reducing smoke toxicity and fire hazards for rigid polyurethane foam. J. Hazard. Mater. 2020, 382, 121028.

    Article  CAS  Google Scholar 

  59. Wu, W.; Zhao, W. J.; Gong, X. J.; Sun, Q. J.; Cao, X. W.; Su, Y. J.; Yu, B.; Li, R. K. Y.; Vellaisamy, R. A. L. Surface decoration of Halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites. J. Mater. Sci. Technol. 2022, 101, 107–117.

    Article  Google Scholar 

  60. Ni, J. X.; Chen, L. J.; Zhao, K. M.; Hu, Y.; Song, L. Preparation of gel-silica/ammonium polyphosphate core—shell flame retardant and properties of polyurethane composites. Polym. Adv. Technol. 2011, 22, 1824–1831.

    Article  CAS  Google Scholar 

  61. Ren, Y. L.; Zhang, Y.; Gu, Y. T.; Zeng, Q. Flame retardant polyacrylonitrile fabrics prepared by organic-inorganic hybrid silica coating via sol-gel technique. Prog. Org. Coat. 2017, 112, 225–233.

    Article  CAS  Google Scholar 

  62. Rajaei, M.; Wang, D. Y.; Bhattacharyya, D. Combined effects of ammonium polyphosphate and talc on the fire and mechanical properties of epoxy/glass fabric composites. Compos. Part B: Eng. 2017, 113, 381–390.

    Article  CAS  Google Scholar 

  63. Bian, R. J.; Lin, R. Z.; Wang, G. L.; Lu, G.; Zhi, W. Q.; Xiang, S. L.; Wang, T. W.; Clegg, P. S.; Cai, D. Y.; Huang, W. 3D assembly of Ti3C2-MXene directed by water/oil interfaces. Nanoscale 2018, 10, 3621–3625.

    Article  CAS  Google Scholar 

  64. Fan, Z. M.; Wang, D. L.; Yuan, Y.; Wang, Y. S.; Cheng, Z. J.; Liu, Y. Y.; Xie, Z. M. A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122696.

    Article  CAS  Google Scholar 

  65. Peng, M. Y.; Qin, F. X. Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 2021, 130, 225108.

    Article  CAS  Google Scholar 

  66. Li, Y.; Shen, B.; Yi, D.; Zhang, L. H.; Zhai, W. T.; Wei, X. C.; Zheng, W. G. The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos. Sci. Technol. 2017, 138, 209–216.

    Article  CAS  Google Scholar 

  67. Bertolini, M. C.; Ramoa, S. D. A. S.; Merlini, C.; Barra, G. M. O.; Soares, B. G.; Pegoretti, A. Hybrid composites based on thermoplastic polyurethane with a mixture of carbon nanotubes and carbon black modified with polypyrrole for electromagnetic shielding. Front. Mater. 2020, 7, 174.

    Article  Google Scholar 

  68. Shin, B.; Mondal, S.; Lee, M.; Kim, S.; Huh, Y. I.; Nah, C. Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management. Chem. Eng. J. 2021, 418, 129282.

    Article  CAS  Google Scholar 

  69. Dong, W. Q.; He, L.; Chen, C. Q.; Kang, J.; Niu, H. M.; Zhang, J. B.; Li, J.; Li, K. S. Preparation and electromagnetic shielding performances of graphene/TPU-PVDF nanocomposites by high-energy ball milling. J. Mater. Sci. Mater. Electron. 2022, 33, 1817–1829.

    Article  CAS  Google Scholar 

  70. Ji, X. Y.; Chen, D. Y.; Wang, Q. W.; Shen, J. B.; Guo, S. Y. Synergistic effect of flame retardants and carbon nanotubes on flame retarding and electromagnetic shielding properties of thermoplastic polyurethane. Compos. Sci. Technol. 2018, 163, 49–55.

    Article  CAS  Google Scholar 

  71. Shi, Y. D.; He, L.; Chen, D. Y.; Wang, Q. W.; Shen, J. B.; Guo, S. Y. Simultaneously improved electromagnetic interference shielding and flame retarding properties of poly(butylene succinate)/thermoplastic polyurethane blends by constructing segregated flame retardants and multi-walled carbon nanotubes double network. Compos. Part A: Appl. Sci. Manuf. 2020, 137, 106037.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52173070 and 51803031). The authors thank Dr. Jianhang Lin, Dr. Qingming Huang and Dr. Na Ai of Fujian College Association Instrumental Analysis Center for assisting analysis of SEM images, XRD patterns and Raman spectra, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqian Shi.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Liu, M., Shi, Y. et al. Multi-hierarchical flexible composites towards superior fire safety and electromagnetic interference shielding. Nano Res. 15, 9531–9543 (2022). https://doi.org/10.1007/s12274-022-4883-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4883-6

Keywords

Navigation