Skip to main content
Log in

Low-loading gold in situ doped with sulfur by biomolecule-assisted approach for promoted electrochemical carbon dioxide reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

For electrochemical carbon dioxide reduction (CO2RR), CO2-to-CO conversion is considered an ideal route towards carbon neutrality for practical applications. Gold (Au) is known as a promising catalyst with high selectivity for CO; however, it suffers from high cost and low mass-specific activity. In this study, we design and prepare a catalyst featuring uniform S-doped Au nanoparticles on N-doped carbon support (denoted as S-Au/NC) by an in situ synthesis strategy using biomolecules. The S-Au/NC displays high activity and selectivity for CO in CO2RR with a Au loading as low as 0.4 wt.%. The Faradaic efficiency of CO (FECO) for S-Au/NC is above 95% at −0.75 V (vs. RHE); by contrast, the FECO of Au/NC (without S) is only 58%. The Tafel slope is 77.4 mV·dec−1, revealing a favorable kinetics process. Furthermore, S-Au/NC exhibits an excellent long-term stability for CO2RR. Density functional theory (DFT) calculations reveal that the S dopant can boost the activity by reducing the free energy change of the potential-limiting step (formation of the *COOH intermediate). This work not only demonstrates a model catalyst featuring significantly reduced use of noble metals, but also establishes an in situ synthesis strategy for preparing high-performance catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, L.; Li, H. B.; Wang, Y.; Li, H. F.; Wei, P. F.; Nan, B.; Si, R.; Wang, G. X.; Bao, X. H. Temperature-dependent CO2 electroreduction over Fe—N—C and Ni—N—C single-atom catalysts. Angew. Chem. Int. Ed. 2021, 60, 26582–26586.

    Article  CAS  Google Scholar 

  2. Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    Article  CAS  Google Scholar 

  3. Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem. Int. Ed. 2020, 59, 1961–1965.

    Article  CAS  Google Scholar 

  4. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

    Article  CAS  Google Scholar 

  5. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    Article  CAS  Google Scholar 

  6. Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru—Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2022, 134, e202205946.

    Article  Google Scholar 

  7. Jin, S.; Hao, Z. M.; Zhang, K.; Yan, Z. H.; Chen, J. Advances and challenges for the electrochemical reduction of CO2 to CO: From fundamentals to industrialization. Angew. Chem. Int. Ed. 2021, 60, 20627–20648.

    Article  CAS  Google Scholar 

  8. Jiao, J. Q.; Zhang, N. N.; Zhang, C.; Sun, N.; Pan, Y.; Chen, C.; Li, J.; Tan, M. J.; Cui, R. X.; Shi, Z. L. et al. Doping ruthenium into metal matrix for promoted pH-universal hydrogen evolution. Adv. Sci. 2022, 9, 2200010.

    Article  CAS  Google Scholar 

  9. Yun, Y. P.; Sheng, H. T.; Bao, K.; Xu, L.; Zhang, Y.; Astruc, D.; Zhu, M. Z. Design and remarkable efficiency of the robust sandwich cluster composite nanocatalysts ZIF-8@Au25@ZIF-67. J. Am. Chem. Soc. 2020, 142, 4126–4130.

    Article  CAS  Google Scholar 

  10. Wu, J. J.; Yadav, R. M.; Liu, M. J.; Sharma, P. P.; Tiwary, C. S.; Ma, L. L.; Zou, X. L.; Zhou, X. D.; Yakobson, B. I.; Lou, J. et al. Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano 2015, 9, 5364–5371.

    Article  CAS  Google Scholar 

  11. Wang, Y. F.; Li, Y. X.; Wang, Z. Y.; Allan, P.; Zhang, F. C.; Lu, Z. G. Reticular chemistry in electrochemical carbon dioxide reduction. Sci. China Mater. 2020, 63, 1113–1141.

    Article  CAS  Google Scholar 

  12. Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. Q.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.

    Article  CAS  Google Scholar 

  13. Zhao, S.; Jin, R. X.; Jin, R. C. Opportunities and challenges in CO2 reduction by gold- and silver-based electrocatalysts: From bulk metals to nanoparticles and atomically precise nanoclusters. ACS Energy Lett. 2018, 3, 452–462.

    Article  CAS  Google Scholar 

  14. Souza, M. L.; Lima, F. H. B. Dibenzyldithiocarbamate-functionalized small gold nanoparticles as selective catalysts for the electrochemical reduction of CO2 to CO. ACS Catal. 2021, 11, 12208–12219.

    Article  CAS  Google Scholar 

  15. Zhu, W. L.; Zhang, Y. J.; Zhang, H. Y.; Lv, H. F.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. H. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 2014, 136, 16132–16135.

    Article  CAS  Google Scholar 

  16. Gao, D. F.; Zhang, Y.; Zhou, Z. W.; Cai, F.; Zhao, X. F.; Huang, W. G.; Li, Y. S.; Zhu, J. F.; Liu, P.; Yang, F. et al. Enhancing CO2 electroreduction with the metal-oxide interface. J. Am. Chem. Soc. 2017, 139, 5652–5655.

    Article  CAS  Google Scholar 

  17. Zhu, W. L.; Michalsky, R.; Metin, Ö.; Lv, H. F.; Guo, S. J.; Wright, C. J.; Sun, X. L.; Peterson, A. A.; Sun, S. H. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 2013, 135, 16833–16836.

    Article  CAS  Google Scholar 

  18. Mistry, H.; Reske, R.; Zeng, Z. H.; Zhao, Z. J.; Greeley, J.; Strasser, P.; Cuenya, B. R. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J. Am. Chem. Soc. 2014, 136, 16473–16476.

    Article  CAS  Google Scholar 

  19. Guo, H.; Si, D. H.; Zhu, H. J.; Li, Q. X.; Huang, Y. B.; Cao, R. Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities. eScience 2022, 2, 295–303.

    Article  Google Scholar 

  20. Hossain, M. N.; Liu, Z. G.; Wen, J. L.; Chen, A. C. Enhanced catalytic activity of nanoporous Au for the efficient electrochemical reduction of carbon dioxide. Appl. Catal. B: Environ. 2018, 236, 483–489.

    Article  CAS  Google Scholar 

  21. Back, S.; Yeom, M. S.; Jung, Y. Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 2015, 5, 5089–5096.

    Article  CAS  Google Scholar 

  22. Cao, T.; Lin, R.; Liu, S. J.; Cheong, W. C.; Li, Z.; Wu, K. L.; Zhu, Y. Q.; Wang, X. L.; Zhang, J.; Li, Q. H. et al. Atomically dispersed Ni anchored on polymer-derived mesh-like N-doped carbon nanofibers as an efficient CO2 electrocatalytic reduction catalyst. Nano Res. 2022, 15, 3959–3963.

    Article  CAS  Google Scholar 

  23. Jiao, J. Q.; Yang, W. J.; Pan, Y.; Zhang, C.; Liu, S. J.; Chen, C.; Wang, D. S. Interface engineering of partially phosphidated Co@Co-P@NPCNTs for highly enhanced electrochemical overall water splitting. Small 2020, 16, 2002124.

    Article  CAS  Google Scholar 

  24. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  25. Li, S. T.; Nagarajan, A. V.; Alfonso, D. R.; Sun, M. K.; Kauffman, D. R.; Mpourmpakis, G.; Jin, R. C. Boosting CO2 electrochemical reduction with atomically precise surface modification on gold nanoclusters. Angew. Chem. Int. Ed. 2021, 60, 6351–6356.

    Article  CAS  Google Scholar 

  26. Chen, Y. H.; Li, C. W.; Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 19969–19972.

    Article  CAS  Google Scholar 

  27. Jia, C.; Tan, X.; Zhao, Y.; Ren, W. H.; Li, Y. B.; Su, Z.; Smith, S. C.; Zhao, C. Sulfur-dopants promoted electroreduction of CO2 over coordinatively unsaturated Ni-N2 moieties. Angew. Chem. Int. Ed. 2021, 60, 23342–23348.

    Article  CAS  Google Scholar 

  28. Li, M. F.; Zhang, B.; Cheng, T.; Yu, S.; Louisia, S.; Chen, C. B.; Chen, S. P.; Cestellos-Blanco, S.; Goddard, W. A.; Yang, P. D. Sulfur-doped graphene anchoring of ultrafine Au25 nanoclusters for electrocatalysis. Nano Res. 2021, 14, 3509–3513.

    Article  CAS  Google Scholar 

  29. Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem. Int. Ed. 2022, 61, e202114450.

    CAS  Google Scholar 

  30. Chen, Z. W.; Zhang, J. W.; Zhang, C.; Cui, R. X.; Tan, M. J.; Guo, S.; Wang, H. J.; Jiao, J. Q.; Lu, T. B. Regulating the coordination metal center in immobilized molecular complexes as single-atomic electrocatalysts for highly active, selective and durable electrochemical CO2 reduction. J. Power. Sources 2022, 519, 230788.

    Article  CAS  Google Scholar 

  31. Tan, Y.; Yan, L.; Huang, C. Q.; Zhang, W. N.; Qi, H. F.; Kang, L. L.; Pan, X. L.; Zhong, Y. J.; Hu, Y.; Ding, Y. J. Fabrication of an Au25-Cys-Mo electrocatalyst for efficient nitrogen reduction to ammonia under ambient conditions. Small 2021, 17, 2100372.

    Article  CAS  Google Scholar 

  32. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Article  CAS  Google Scholar 

  33. Tai, H. L.; Nishikawa, K.; Higuchi, Y.; Mao, Z. W.; Hirota, S. Cysteine SH and glutamate COOH contributions to Ni-Fe hydrogenase proton transfer revealed by highly sensitive FTIR spectroscopy. Angew. Chem. Int. Ed. 2019, 58, 13285–13290.

    Article  CAS  Google Scholar 

  34. Bao, L. R.; Zhu, S. H.; Chen, Y.; Wang, Y.; Meng, W. H.; Xu, S.; Lin, Z. H.; Li, X. Y.; Sun, M.; Guo, L. M. Anionic defects engineering of Co3O4 catalyst for toluene oxidation. Fuel 2022, 314, 122774.

    Article  CAS  Google Scholar 

  35. Shi, Q. Q.; Peng, F.; Liao, S. X.; Wang, H. J.; Yu, H.; Liu, Z. W.; Zhang, B. S.; Su, D. S. Sulfur and nitrogen co-doped carbon nanotubes for enhancing electrochemical oxygen reduction activity in acidic and alkaline media. J. Mater. Chem. A 2013, 1, 14853–14857.

    Article  CAS  Google Scholar 

  36. Gadgil, B.; Damlin, P.; Viinikanoja, A.; Heinonen, M.; Kvarnström, C. One-pot synthesis of an Au/Au2S viologen hybrid nanocomposite for efficient catalytic applications. J. Mater. Chem. A 2015, 3, 9731–9737.

    Article  CAS  Google Scholar 

  37. Zhao, S. Q.; Tang, Z. Y.; Guo, S. J.; Han, M. M.; Zhu, C.; Zhou, Y. J.; Bai, L.; Gao, J.; Huang, H.; Li, Y. Y. et al. Enhanced activity for CO2 electroreduction on a highly active and stable ternary Au-CDots-C3N4 electrocatalyst. ACS Catal. 2018, 8, 188–197.

    Article  CAS  Google Scholar 

  38. Wan, X. K.; Wang, J. Q.; Wang, Q. M. Ligand-protected Au55 with a novel structure and remarkable CO2 electroreduction performance. Angew. Chem. Int. Ed. 2021, 133, 20916–20921.

    Article  Google Scholar 

  39. Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem. Int. Ed. 2021, 60, 23614–23618.

    Article  CAS  Google Scholar 

  40. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  41. Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

    Article  CAS  Google Scholar 

  42. Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem. Int. Ed. 2021, 60, 6170–6176.

    Article  CAS  Google Scholar 

  43. Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 2021, 60, 13388–13393.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Nos. 52072260, 21931007, 21790052, and U21A20317), the Science and Technology Support Program for Youth Innovation in Universities of Shangdong Province (No. 2020KJA012), the Tianjin Natural Science Foundation (Nos. 21JCZXJC00130 and B2021201074), the Haihe Laboratory of Sustainable Chemical Transformations, National Key R&D Program of China (No. 2017YFA0700104), and the University Synergy Innovation Program of Anhui Province (No. GXXT-2020-001). Supercomputing of Anhui University and National Supercomputing Center in Shanghai was acknowledged for computational support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiquan Luo or Jiqing Jiao.

Electronic Supplementary Material

12274_2022_4878_MOESM1_ESM.pdf

Low-loading gold in situ doped with sulfur by biomolecule-assisted approach for promoted electrochemical carbon dioxide reduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, M., Han, X., Ru, S. et al. Low-loading gold in situ doped with sulfur by biomolecule-assisted approach for promoted electrochemical carbon dioxide reduction. Nano Res. 16, 2059–2064 (2023). https://doi.org/10.1007/s12274-022-4878-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4878-3

Keywords

Navigation