Skip to main content
Log in

Rational design of graphyne-based dual-atom site catalysts for CO oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

There are increasing concerns about the environmental impact of rising atmospheric carbon monoxide concentrations, thus it is necessary to develop new catalysts for efficient CO oxidation. Based on first-principles calculations, the potential of γ-graphyne (GY) as substrate for metals in the 4th and 5th periods under single-atom and dual-atoms concentration modes has been systematically investigated. It was found that single-atom Co, Ir, Rh, and Ru could effectively oxidate CO molecules, especially for single Rh. Furthermore, proper atoms concentration could boost the CO oxidation activity by supplying more reaction centers, such as Rh2/GY. It was determined that two Rh atoms in Rh2/GY act different roles in the catalytic reaction: one structural and another functional. Screening tests suggest that substituting the structural Rh atom in the center of acetylenic ring by Co or Cu atom is a possible way to maintain the reaction performance while reducing the noble metal cost. This systemic investigation will help in understanding the fundamental reaction mechanisms on GY-based substrates. We emphasize that properly exposed frontier orbital of functional metal atom is crucial in adsorption configuration as well as entire catalytic performance. This study constructs a workflow and provides valuable information for rational design of CO oxidation catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Z. P.; Hu, P. CO oxidation and NO reduction on metal surfaces: Density functional theory investigations. Top. Catal. 2004, 28, 71–78.

    Article  Google Scholar 

  2. Molina, L. M.; Hammer, B. Active role of oxide support during CO oxidation at Au/MgO. Phys. Rev. Lett. 2003, 90, 206102.

    Article  CAS  Google Scholar 

  3. Min, B. K.; Friend, C. M. Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation. Chem. Rev. 2007, 107, 2709–2724.

    Article  CAS  Google Scholar 

  4. van Spronsen, M. A.; Frenken, J. W. M.; Groot, I. M. N. Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts. Chem. Soc. Rev. 2017, 46, 4347–4374.

    Article  CAS  Google Scholar 

  5. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    Article  CAS  Google Scholar 

  6. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res., in press, https://doi.org/10.1007/s12274-022-4429-9.

  7. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  8. Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res., 2022, 15, 6888–6923.

    Article  CAS  Google Scholar 

  9. Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

    Article  CAS  Google Scholar 

  10. Huang, C. S.; Li, Y. J.; Wang, N.; Xue, Y. R.; Zuo, Z. C.; Liu, H. B.; Li, Y. L. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744–7803.

    Article  CAS  Google Scholar 

  11. Zeng, M. Q.; Xiao, Y.; Liu, J. X.; Yang, K. N.; Fu, L. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev. 2018, 118, 6236–6296.

    Article  CAS  Google Scholar 

  12. Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

    Article  CAS  Google Scholar 

  13. Gerber, I. C.; Serp, P. A theory/experience description of support effects in carbon-supported catalysts. Chem. Rev. 2020, 120, 1250–1349.

    Article  CAS  Google Scholar 

  14. Yang, Y. L.; Xu, X. M. Mechanical properties of graphyne and its family-a molecular dynamics investigation. Comput. Mater. Sci. 2012, 61, 83–88.

    Article  CAS  Google Scholar 

  15. Gu, Y. B.; Chen, X. L.; Cao, Y. Y.; Zhuang, G. L.; Zhong, X.; Wang, J. G. Atomically dispersed Pd catalysts in graphyne nanopore: Formation and reactivity. Nanotechnology 2017, 28, 295403.

    Article  Google Scholar 

  16. Shi, H.; Xia, M.; Jia, L. T.; Hou, B.; Wang, Q.; Li, D. B. First principles study on the adsorption and diffusion properties of nonnoble (Fe, Co, Ni and Cu) and noble (Ru, Rh, Pt and Pd) metal single atom on graphyne. Chem. Phys. 2020, 536, 110783.

    Article  CAS  Google Scholar 

  17. He, C. Z.; Wang, R.; Xiang, D.; Li, X. Y.; Fu, L.; Jian, Z. Y.; Huo, J. R.; Li, S. Charge-regulated CO2 capture capacity of metal atom embedded graphyne: A first-principles study. Appl. Surf. Sci. 2020, 509, 145392.

    Article  CAS  Google Scholar 

  18. Darvishnejad, M. H.; Reisi-Vanani, A. Synergetic effects of metals in graphyne 2D carbon structure for high promotion of CO2 capturing. Chem. Eng. J. 2021, 406, 126749.

    Article  CAS  Google Scholar 

  19. Srinivasu, K.; Ghosh, S. K. Transition metal decorated graphyne: An efficient catalyst for oxygen reduction reaction. J. Phys. Chem. C 2013, 117, 26021–26028.

    Article  CAS  Google Scholar 

  20. Ni, Y. X.; Miao, L. C.; Wang, J. Q.; Liu, J. X.; Yuan, M. J.; Chen, J. Pore size effect of graphyne supports on CO2 electrocatalytic activity of Cu single atoms. Phys. Chem. Chem. Phys. 2020, 22, 1181–1186.

    Article  CAS  Google Scholar 

  21. Wu, P.; Du, P.; Zhang, H.; Cai, C. X. Graphyne-supported single Fe atom catalysts for CO oxidation. Phys. Chem. Chem. Phys. 2015, 17, 1441–1449.

    Article  CAS  Google Scholar 

  22. Ma, J. P.; Wu, S.; Yuan, Y.; Mao, H.; Lee, J. Y.; Kang, B. T. Graphyne-anchored single Fe atoms as efficient CO oxidation catalysts as predicted by DFT calculations. Phys. Chem. Chem. Phys. 2020, 22, 6004–6009.

    Article  CAS  Google Scholar 

  23. Ma, D. W.; Li, T. X.; Wang, Q. G.; Yang, G.; He, C. Z.; Ma, B. Y.; Lu, Z. S. Graphyne as a promising substrate for the noble-metal single-atom catalysts. Carbon 2015, 95, 756–765.

    Article  CAS  Google Scholar 

  24. Talib, S. H.; Hussain, S.; Baskaran, S.; Lu, Z. S.; Li, J. Chromium single-atom catalyst with graphyne support: A theoretical study of NO oxidation and reduction. ACS Catal. 2020, 10, 11951–11961.

    Article  CAS  Google Scholar 

  25. He, J. J.; Ma, S. Y.; Zhou, P.; Zhang, C. X.; He, C. Y.; Sun, L. Z. Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT plus U calculations. J. Phys. Chem. C 2012, 116, 26313–26321.

    Article  CAS  Google Scholar 

  26. Kim, S.; Ruiz Puigdollers, A.; Gamallo, P.; Vines, F.; Lee, J. Y. Functionalization of gamma-graphyne by transition metal adatoms. Carbon 2017, 120, 63–70.

    Article  CAS  Google Scholar 

  27. Kim, S.; Gamallo, P.; Viñes, F.; Lee, J. Y. The nano gold rush: Graphynes as atomic sieves for coinage and Pt-group transition metals. Appl. Surf. Sci. 2020, 499, 143927.

    Article  CAS  Google Scholar 

  28. Gao, X. P.; Mei, L.; Zhou, Y. N.; Shen, Z. M. Impact of electron transfer of atomic metals on adjacent graphyne layers on electrochemical water splitting. Nanoscale 2020, 12, 7814–7821.

    Article  CAS  Google Scholar 

  29. Arachchige, L. J.; Xu, Y. J.; Dai, Z. X.; Zhang, X. L.; Wang, F.; Sun, C. H. Theoretical investigation of single and double transition metals anchored on graphyne monolayer for nitrogen reduction reaction. J. Phys. Chem. C 2020, 124, 15295–15301.

    Article  Google Scholar 

  30. Cao, Y. Y.; Gao, Y. J.; Zhou, H.; Chen, X. L.; Hu, H.; Deng, S. W.; Zhong, X.; Zhuang, G. L.; Wang, J. G. Highly efficient ammonia synthesis electrocatalyst: Single Ru atom on naturally nanoporous carbon materials. Adv. Theory Simul. 2018, 1, 1800018.

    Article  Google Scholar 

  31. Gao, X. P.; Zhou, Y. N.; Tan, Y. J.; Liu, S. Q.; Cheng, Z. W.; Shen, Z. M. Strain effects on Co, N Co-decorated graphyne catalysts for overall water splitting electrocatalysis. Phys. Chem. Chem. Phys. 2020, 22, 2457–2465.

    Article  CAS  Google Scholar 

  32. Gao, X. P.; Zhou, Y. N.; Liu, S. Q.; Cheng, Z. W.; Tan, Y. J.; Shen, Z. M. Single cobalt atom anchored on N-doped graphyne for boosting the overall water splitting. Appl. Surf. Sci. 2020, 502, 144155.

    Article  CAS  Google Scholar 

  33. He, T. W.; Matta, S. K.; Du, A. J. Single tungsten atom supported on N-doped graphyne as a high-performance electrocatalyst for nitrogen fixation under ambient conditions. Phys. Chem. Chem. Phys. 2019, 21, 1546–1551.

    Article  CAS  Google Scholar 

  34. Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.

    Article  CAS  Google Scholar 

  35. Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B 2002, 66, 155125.

    Article  Google Scholar 

  36. Kim, B. G.; Choi, H. J. Graphyne: Hexagonal network of carbon with versatile Dirac cones. Phys. Rev. B 2012, 86, 115435.

    Article  Google Scholar 

  37. Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 2003, 28, 250–258.

    Article  CAS  Google Scholar 

  38. Wang, X. Y.; Ye, J. M.; Zhang, L.; Bu, Y. X.; Sun, W. M. Strain engineering to tune the performance of CO oxidation on Cu2O(1 1 1) surface: A theoretical study. Appl. Surf. Sci. 2021, 540, 148331.

    Article  CAS  Google Scholar 

  39. Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.

    Article  CAS  Google Scholar 

  40. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

    Article  CAS  Google Scholar 

  41. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.

    Article  Google Scholar 

  42. Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901.

    Article  CAS  Google Scholar 

  43. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  44. Garrity, K. F.; Bennett, J. W.; Rabe, K. M.; Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 2014, 81, 446–452.

    Article  CAS  Google Scholar 

  45. Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA + U framework. Phys. Rev. B 2006, 73, 195107.

    Article  Google Scholar 

  46. Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M. C. Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 1999, 82, 3296–3299.

    Article  CAS  Google Scholar 

  47. Qiao, B. T.; Lin, J.; Wang, A. Q.; Chen, Y.; Zhang, T.; Liu, J. Y. Highly active Au1/Co3O4 single-atom catalyst for CO oxidation at room temperature. Chin. J. Catal. 2015, 36, 1505–1511.

    Article  CAS  Google Scholar 

  48. Schilling, C.; Ziemba, M.; Hess, C.; Ganduglia-Pirovano, M. V. Identification of single-atom active sites in CO oxidation over oxide-supported Au catalysts. J. Catal. 2020, 383, 264–272.

    Article  CAS  Google Scholar 

  49. Khan, A. A.; Ullah, R.; Esrafili, M. D.; Ahmad, R.; Ahmad, I. Co anchored B36 cluster as a novel single atom catalyst for removing toxic CO molecules: A mechanistic first-principles study. ChemistrySelect 2022, 7, e202103798.

    Article  CAS  Google Scholar 

  50. Qin, L.; Cui, Y. Q.; Deng, T. L.; Wei, F. H.; Zhang, X. F. Highly stable and active Cu1/CeO2 single-atom catalyst for CO oxidation: A DFT study. ChemPhysChem 2018, 19, 3346–3349.

    Article  CAS  Google Scholar 

  51. Lu, Y. B.; Wang, J. M.; Yu, L.; Kovarik, L.; Zhang, X. W.; Hoffman, A. S.; Gallo, A.; Bare, S. R.; Sokaras, D.; Kroll, T. et al. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2019, 2, 149–156.

    Article  CAS  Google Scholar 

  52. Muravev, V.; Spezzati, G.; Su, Y. Q.; Parastaev, A.; Chiang, F. K.; Longo, A.; Escudero, C.; Kosinov, N.; Hensen, E. J. M. Interface dynamics of Pd-CeO2 single-atom catalysts during CO oxidation. Nat. Catal. 2021, 4, 469–478.

    Article  CAS  Google Scholar 

  53. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  Google Scholar 

  54. Kropp, T.; Lu, Z. L.; Li, Z.; Chin, Y. H. C.; Mavrikakis, M. Anionic single-atom catalysts for CO oxidation: Support-independent activity at low temperatures. ACS Catal. 2019, 9, 1595–1604.

    Article  CAS  Google Scholar 

  55. DeRita, L.; Dai, S.; Lopez-Zepeda, K.; Pham, N.; Graham, G. W.; Pan, X. Q.; Christopher, P. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 2017, 139, 14150–14165.

    Article  CAS  Google Scholar 

  56. Han, B.; Li, T. B.; Zhang, J. Y.; Zeng, C. B.; Matsumoto, H.; Su, Y.; Qiao, B. T.; Zhang, T. A highly active Rh1/CeO2 single-atom catalyst for low-temperature CO Oxidation. Chem. Commun. 2020, 56, 4870–4873.

    Article  CAS  Google Scholar 

  57. Mao, K. K.; Li, L.; Zhang, W. H.; Pei, Y.; Zeng, X. C.; Wu, X. J.; Yang, J. L. A theoretical study of single-atom catalysis of CO oxidation using Au embedded 2D h-BN monolayer: A CO-promoted O2 activation. Sci. Rep. 2014, 4, 5441.

    Article  CAS  Google Scholar 

  58. Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

    Article  CAS  Google Scholar 

  59. Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

    Article  CAS  Google Scholar 

  60. Zhu, X. R.; Yan, J. X.; Gu, M.; Liu, T. Y.; Dai, Y. F.; Gu, Y. H.; Li, Y. F. Activity origin and design principles for oxygen reduction on dual-metal-site catalysts: A combined density functional theory and machine learning study. J. Phys. Chem. Lett. 2019, 10, 7760–7766.

    Article  CAS  Google Scholar 

  61. Zang, W. J.; Kou, Z. K.; Pennycook, S. J.; Wang, J. Heterogeneous single atom electrocatalysis, where “Singles” are “Married”. Adv. Energy Mater. 2020, 10, 1903181.

    Article  CAS  Google Scholar 

  62. Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

    Article  CAS  Google Scholar 

  63. Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

    Article  CAS  Google Scholar 

  64. Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., in press, https://doi.org/10.1002/ange.202205946.

  65. Chatt, J.; Duncanson, L. A. 586. Olefin co-ordination compounds. Part III. Infra-red spectra and structure:Attempted preparation of acetylene complexes. J. Chem. Soc. 1953, 2939–2947.

  66. Chatt, J.; Duncanson, L. A.; Venanzi, L. M. Directing effects in inorganic substitution reactions. Part I. A hypothesis to explain the trans-effect. J. Chem. Soc. 1955, 4456–4460.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22101029 and 21703219), Beijing Municipal Natural Science Foundation (No. 2222006), Beijing Municipal Financial Project BJAST Scholar Programs B (No. BS202001), and Beijing Municipal Financial Project BJAST Young Scholar Programs B (No. YS202202). The authors acknowledge computational resources of TianHe-1A supercomputer at the National Supercomputing Center in Tianjin and technical support from Tianhe Supercomputing Center of Huaihai.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangwen Liu or Wenming Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhang, L., Wang, X. et al. Rational design of graphyne-based dual-atom site catalysts for CO oxidation. Nano Res. 16, 343–351 (2023). https://doi.org/10.1007/s12274-022-4823-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4823-3

Keywords

Navigation