Skip to main content
Log in

Advances of photothermal chemistry in photocatalysis, thermocatalysis, and synergetic photothermocatalysis for solar-to-fuel generation

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The urgency of reducing pollutants and greenhouse gas emissions while maintaining fuel supply for the development of society remains one of the greatest challenges. Solar energy, a clean and sustainable energy resource, can be converted into fuels through solar-driven catalysis, and this provides an attractive solution for future energy demand. The current development of photothermal catalysis (PTC) based on the integration of solar thermal and photochemical contributions is becoming increasingly popular for full spectrum utilization. The combination of the thermochemical and photochemical processes synergistically drives the catalytic reactions efficiently under relatively mild conditions. In this review, the mechanisms of PTC are classified based on driving forces and the benefits of photothermal effects in different PTC reactions are discussed. Subsequently, the techniques for differentiating and quantifying the various effects of PTC, including experimental designs, thermometry characterization techniques, and computational studies, are summarized. Then, the major determinant properties and architectural designs for efficient photothermal catalysts are offered. Moreover, applications for fuel generation through water splitting and carbon dioxide reduction are reviewed. Finally, the current challenges and future directions of PTC are presented. This article aims to provide a comprehensive review of the current advances in PTC along with a guide for understanding the mechanisms and rational material designs to pursue solar fuel that would diversify and increase the sustainability of our energy supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z. J.; Song, H.; Liu, H. M.; Ye, J. H. Coupling of solar energy and thermal energy for carbon dioxide reduction: Status and prospects. Angew. Chem., Int. Ed. 2020, 59, 8016–8035.

    Article  CAS  Google Scholar 

  2. Xu, C. Y.; Hong, J. N.; Sui, P. F.; Zhu, M. N.; Zhang, Y. W.; Luo, J. L. Standalone solar carbon-based fuel production based on semiconductors. Cell Rep. Phys. Sci. 2020, 1, 100101.

    Article  Google Scholar 

  3. Baffou, G.; Cichos, F.; Quidant, R. Applications and challenges of thermoplasmonics. Nat. Mater. 2020, 19, 946–958.

    Article  CAS  Google Scholar 

  4. Zhang, W. J.; Ma, D.; Pérez-Ramírez, J.; Chen, Z. P. Recent progress in materials exploration for thermocatalytic, photocatalytic, and integrated photothermocatalytic CO2-to-fuel conversion. Adv. Energy Sustainability Res. 2022, 3, 2100169.

    Article  Google Scholar 

  5. Hong, J. N.; Xu, C. Y.; Deng, B. W.; Gao, Y.; Zhu, X.; Zhang, X. H.; Zhang, Y. W. Photothermal chemistry based on solar energy: From synergistic effects to practical applications. Adv. Sci. 2022, 9, 2103926.

    Article  CAS  Google Scholar 

  6. Ghoussoub, M.; Xia, M. K.; Duchesne, P. N.; Segal, D.; Ozin, G. Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy Environ. Sci. 2019, 12, 1122–1142.

    Article  CAS  Google Scholar 

  7. Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 2018, 5, 323–343.

    Article  CAS  Google Scholar 

  8. Yang, Y.; Zhao, S. H.; Cui, L. F.; Bi, F. K.; Zhang, Y. N.; Liu, N.; Wang, Y. X.; Liu, F. D.; He, C.; Zhang, X. D. Recent advancement and future challenges of photothermal catalysis for VOCs elimination: From catalyst design to applications. Green Energy Environ., in press, https://doi.org/10.1016/j.gee.2022.02.006.

  9. Zheng, Y. K.; Zhang, L.; Guan, J.; Qian, S. Y.; Zhang, Z. X.; Ngaw, C. K.; Wan, S. L.; Wang, S.; Lin, J. D.; Wang, Y. Controlled synthesis of Cu0/Cu2O for efficient photothermal catalytic conversion of CO2 and H2O. ACS Sustainable Chem. Eng. 2021, 9, 1754–1761.

    Article  CAS  Google Scholar 

  10. Nair, V.; Muñoz-Batista, M. J.; Fernández-García, M.; Luque, R.; Colmenares, J. C. Thermo-photocatalysis: Environmental and energy applications. ChemSusChem 2019, 12, 2098–2116.

    Article  CAS  Google Scholar 

  11. Li, X. J.; Zhao, S. Y.; Duan, X. G.; Zhang, H. Y.; Yang, S. Z.; Zhang, P. P.; Jiang, S. P.; Liu, S. M.; Sun, H. Q.; Wang, S. B. Coupling hydrothermal and photothermal single-atom catalysis toward excellent water splitting to hydrogen. Appl. Catal. B:Environ. 2021, 283, 119660.

    Article  CAS  Google Scholar 

  12. Mateo, D.; Morlanes, N.; Maity, P.; Shterk, G.; Mohammed, O. F.; Gascon, J. Efficient visible-light driven photothermal conversion of CO2 to methane by nickel nanoparticles supported on barium titanate. Adv. Funct. Mater. 2020, 31, 2008244.

    Article  Google Scholar 

  13. Mateo, D.; Cerrillo, J. L.; Durini, S.; Gascon, J. Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev. 2021, 50, 2173–2210.

    Article  CAS  Google Scholar 

  14. Li, H. K.; Dang, C. X.; Yang, G. X.; Cao, Y. H.; Wang, H. J.; Peng, F.; Yu, H. Bi-functional particles for integrated thermo-chemical processes: Catalysis and beyond. Particuology 2021, 56, 10–32.

    Article  CAS  Google Scholar 

  15. Yang, Y. Y.; Feng, H. P.; Niu, C. G.; Huang, D. W.; Guo, H.; Liang, C.; Liu, H. Y.; Chen, S.; Tang, N.; Li, L. Constructing a plasma-based Schottky heterojunction for near-infrared-driven photothermal synergistic water disinfection: Synergetic effects and antibacterial mechanisms. Chem. Eng. J. 2021, 426, 131902.

    Article  CAS  Google Scholar 

  16. Li, N. X.; Tu, Y.; Wang, K.; Huang, D. X.; Shen, Q. H.; Chen, W. S.; Zhou, J. C.; Ma, Q. H.; Liu, M. C. Construction of a photo-thermal-magnetic coupling reaction system for enhanced CO2 reduction to CH4. Chem. Eng. J. 2021, 421, 129940.

    Article  CAS  Google Scholar 

  17. Wang, S. H.; Tountas, A. A.; Pan, W. B.; Zhao, J. J.; He, L.; Sun, W.; Yang, D. R.; Ozin, G. A. CO2 footprint of thermal versus photothermal CO2 catalysis. Small 2021, 17, 2007025.

    Article  CAS  Google Scholar 

  18. Zhang, F.; Li, Y. H.; Qi, M. Y.; Yamada, Y. M. A.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Photothermal catalytic CO2 reduction over nanomaterials. Chem Catal. 2021, 1, 272–297.

    Article  Google Scholar 

  19. Kho, E. T.; Tan, T. H.; Lovell, E.; Wong, R. J.; Scott, J.; Amal, R. A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy Environ. 2017, 2, 204–217.

    Article  Google Scholar 

  20. Xie, B. Q.; Lovell, E.; Tan, T. H.; Jantarang, S.; Yu, M. Y.; Scott, J.; Amal, R. Emerging material engineering strategies for amplifying photothermal heterogeneous CO2 catalysis. J. Energy Chem. 2021, 59, 108–125.

    Article  CAS  Google Scholar 

  21. Luo, S. Q.; Ren, X. H.; Lin, H. W.; Song, H.; Ye, J. H. Plasmonic photothermal catalysis for solar-to-fuel conversion: Current status and prospects. Chem. Sci. 2021, 12, 5701–5719.

    Article  CAS  Google Scholar 

  22. Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.

    Article  CAS  Google Scholar 

  23. Gao, M. M.; Zhu, L. L.; Peh, C. K.; Ho, G. W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 2019, 12, 841–864.

    Article  CAS  Google Scholar 

  24. Ma, R.; Sun, J.; Li, D. H.; Wei, J. J. Review of synergistic photo-thermo-catalysis: Mechanisms, materials and applications. Int. J. Hydrog. Energy 2020, 45, 30288–30324.

    Article  CAS  Google Scholar 

  25. Wang, F. F.; Huang, Y. J.; Chai, Z. G.; Zeng, M.; Li, Q.; Wang, Y.; Xu, D. S. Photothermal-enhanced catalysis in core—shell plasmonic hierarchical Cu7S4 microsphere@zeolitic imidazole framework-8. Chem. Sci. 2016, 7, 6887–6893.

    Article  CAS  Google Scholar 

  26. Kim, C.; Hyeon, S.; Lee, J.; Kim, W. D.; Lee, D. C.; Kim, J.; Lee, H. Energy-efficient CO2 hydrogenation with fast response using photoexcitation of CO2 adsorbed on metal catalysts. Nat. Commun. 2018, 9, 3027.

    Article  Google Scholar 

  27. Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.

    Article  CAS  Google Scholar 

  28. Du, S. H.; Bian, X. N.; Zhao, Y. X.; Shi, R.; Zhang, T. R. Progress and prospect of photothermal catalysis. Chem. Res. Chin. Univ. 2022, 38, 723–734.

    Article  CAS  Google Scholar 

  29. Zhang, Y. W.; Xu, C. Y.; Chen, J. C.; Zhang, X. H.; Wang, Z. H.; Zhou, J. H.; Cen, K. F. A novel photo-thermochemical cycle for the dissociation of CO2 using solar energy. Appl. Energy 2015, 156, 223–229.

    Article  CAS  Google Scholar 

  30. Xie, T.; Zhang, Z. Y.; Zheng, H. Y.; Xu, K. D.; Hu, Z.; Lei, Y. Enhanced photothermal catalytic performance of dry reforming of methane over Ni/mesoporous TiO2 composite catalyst. Chem. Eng. J. 2022, 429, 132507.

    Article  CAS  Google Scholar 

  31. Chen, G. B.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. Q.; Li, Z. H.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. From solar energy to fuels: Recent advances in light-driven C1 chemistry. Angew. Chem., Int. Ed. 2019, 58, 17528–17551.

    Article  CAS  Google Scholar 

  32. Xu, Y. F.; Duchesne, P. N.; Wang, L.; Tavasoli, A.; Jelle, A. A.; Xia, M. K.; Liao, J. F.; Kuang, D. B.; Ozin, G. A. Highperformance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides. Nat. Commun. 2020, 11, 5149.

    Article  CAS  Google Scholar 

  33. Song, C. Q.; Wang, Z. H.; Yin, Z.; Xiao, D. Q.; Ma, D. Principles and applications of photothermal catalysis. Chem Catal. 2022, 2, 52–83.

    Article  Google Scholar 

  34. Li, Z.; Zhang, X. H.; Zhang, L.; Xu, C. Y.; Zhang, Y. W. Pathway alteration of water splitting via oxygen vacancy formation on anatase titanium dioxide in photothermal catalysis. J. Phys. Chem. C 2020, 124, 26214–26221.

    Article  CAS  Google Scholar 

  35. Zhang, M. T.; Wang, M.; Xu, B. J.; Ma, D. How to measure the reaction performance of heterogeneous catalytic reactions reliably. Joule 2019, 3, 2876–2883.

    Article  Google Scholar 

  36. Shoji, S.; Peng, X. B.; Yamaguchi, A.; Watanabe, R.; Fukuhara, C.; Cho, Y.; Yamamoto, T.; Matsumura, S.; Yu, M. W.; Ishii, S. et al. Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems. Nat. Catal. 2020, 3, 148–153.

    Article  CAS  Google Scholar 

  37. Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576.

    Article  CAS  Google Scholar 

  38. Li, Z.; Zhang, L.; Huang, W. H.; Xu, C. Y.; Zhang, Y. W. Photothermal catalysis for selective CO2 reduction on the modified anatase TiO2 (101) surface. ACS Appl. Energy Mater. 2021, 4, 7702–7709.

    Article  CAS  Google Scholar 

  39. Zhu, Z. Z.; Guo, W. Y.; Zhang, Y.; Pan, C. S.; Xu, J.; Zhu, Y. F.; Lou, Y. Research progress on methane conversion coupling photocatalysis and thermocatalysis. Carbon Energy 2021, 3, 519–540.

    Article  CAS  Google Scholar 

  40. Wang, F.; Li, C. H.; Chen, H. J.; Jiang, R. B.; Sun, L. D.; Li, Q.; Wang, J. F.; Yu, J. C.; Yan, C. H. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 2013, 135, 5588–5601.

    Article  CAS  Google Scholar 

  41. Hoch, L. B.; O’Brien, P. G.; Jelle, A.; Sandhel, A.; Perovic, D. D.; Mims, C. A.; Ozin, G. A. Nanostructured indium oxide coated silicon nanowire arrays: A hybrid photothermal/photochemical approach to solar fuels. ACS Nano 2016, 10, 9017–9025.

    Article  CAS  Google Scholar 

  42. Gao, M. M.; Connor, P. K. N.; Ho, G. W. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy Environ. Sci. 2016, 9, 3151–3160.

    Article  CAS  Google Scholar 

  43. Han, B.; Wei, W.; Chang, L.; Cheng, P. F.; Hu, Y. H. Efficient visible light photocatalytic CO2 reforming of CH4. ACS Catal. 2016, 6, 494–497.

    Article  CAS  Google Scholar 

  44. Yuan, D. C.; Peng, Y. H.; Ma, L. P.; Li, J. C.; Zhao, J. G.; Hao, J. J.; Wang, S. F.; Liang, B. L.; Ye, J. H.; Li, Y. G. Coke and sintering resistant nickel atomically doped with ceria nanosheets for highly efficient solar driven hydrogen production from bioethanol. Green Chem., 2022, 24, 2044–2050.

    Article  CAS  Google Scholar 

  45. Li, Y. G.; Bai, X. H.; Yuan, D. C.; Zhang, F. Y.; Li, B.; San, X. Y.; Liang, B. L.; Wang, S. F.; Luo, J.; Fu, G. S. General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy. Nat. Commun. 2022, 13, 776.

    Article  CAS  Google Scholar 

  46. Meng, X. G.; Wang, T.; Liu, L. Q.; Ouyang, S. X.; Li, P.; Hu, H. L.; Kako, T.; Iwai, H.; Tanaka, A.; Ye, J. H. Photothermal conversion of CO2 into CH4 with H2 over Group VIII nanocatalysts: An alternative approach for solar fuel production. Angew. Chem., Int. Ed. 2014, 53, 11478–11482.

    Article  CAS  Google Scholar 

  47. Rej, S.; Mascaretti, L.; Santiago, E. Y.; Tomanec, O.; Kment, S.; Wang, Z. M.; Zbořil, R.; Fornasiero, P.; Govorov, A. O.; Naldoni, A. Determining plasmonic hot electrons and photothermal effects during H2 evolution with TiN-Pt nanohybrids. ACS Catal. 2020, 10, 5261–5271.

    Article  CAS  Google Scholar 

  48. Takami, D.; Ito, Y.; Kawaharasaki, S.; Yamamoto, A.; Yoshida, H. Low temperature dry reforming of methane over plasmonic Ni photocatalysts under visible light irradiation. Sustainable Energy Fuels 2019, 3, 2968–2971.

    Article  CAS  Google Scholar 

  49. Nguyen, N. T.; Yan, T. J.; Wang, L.; Loh, J. Y. Y.; Duchesne, P. N.; Mao, C. L.; Li, P. C.; Jelle, A. A.; Xia, M. K.; Ghoussoub, M. et al. Plasmonic titanium nitride facilitates indium oxide CO2 photocatalysis. Small 2020, 16, 2005754.

    Article  CAS  Google Scholar 

  50. Aslam, U.; Rao, V. G.; Chavez, S.; Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 2018, 1, 656–665.

    Article  Google Scholar 

  51. Chen, X.; Li, Q.; Zhang, M.; Li, J. J.; Cai, S. C.; Chen, J.; Jia, H. P. MOF-templated preparation of highly dispersed Co/Al2O3 composite as the photothermal catalyst with high solar-to-fuel efficiency for CO2 methanation. ACS Appl. Mater. Interfaces 2020, 12, 39304–39317.

    Article  CAS  Google Scholar 

  52. Peh, C. K. N.; Gao, M. M.; Ho, G. W. Harvesting broadband absorption of the solar spectrum for enhanced photocatalytic H2 generation. J. Mater. Chem. A 2015, 3, 19360–19367.

    Article  CAS  Google Scholar 

  53. Hoch, L. B.; Wood, T. E.; O’Brien, P. G.; Liao, K.; Reyes, L. M.; Mims, C. A.; Ozin, G. A. The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both UV and visible light. Adv. Sci. 2014, 1, 1400013.

    Article  Google Scholar 

  54. Li, Y. Y.; Peng, Y. K.; Hu, L. S.; Zheng, J. W.; Prabhakaran, D.; Wu, S.; Puchtler, T. J.; Li, M.; Wong, K. Y.; Taylor, R. A. et al. Photocatalytic water splitting by N-TiO2 on MgO (111) with exceptional quantum efficiencies at elevated temperatures. Nat. Commun. 2019, 10, 4421.

    Article  Google Scholar 

  55. Li, Y. Y.; Wang, C. H.; Song, M.; Li, D. S.; Zhang, X. T.; Liu, Y. C. TiO2−x/CoOx photocatalyst sparkles in photothermocatalytic reduction of CO2 with H2O steam. Appl. Catal. B:Environ. 2019, 243, 760–770.

    Article  CAS  Google Scholar 

  56. Chen, G. B.; Gao, R.; Zhao, Y. F.; Li, Z. H.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. Q.; Zhang, M. T.; Shang, L.; Sheng, G. Y. et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv. Mater. 2018, 30, 1704663.

    Article  Google Scholar 

  57. Pan, F. P.; Xiang, X. M.; Deng, W.; Zhao, H. L.; Feng, X. H.; Li, Y. A novel photo-thermochemical approach for enhanced carbon dioxide reforming of methane. ChemCatChem 2018, 10, 940–945.

    Article  CAS  Google Scholar 

  58. Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.

    Article  CAS  Google Scholar 

  59. Li, J.; Ye, Y. H.; Ye, L. Q.; Su, F. Y.; Ma, Z. Y.; Huang, J. D.; Xie, H. Q.; Doronkin, D. E.; Zimina, A.; Grunwaldt, J. D. et al. Sunlight induced photo-thermal synergistic catalytic CO2 conversion via localized surface plasmon resonance of MoO3−x. J. Mater. Chem. A 2019, 7, 2821–2830.

    Article  CAS  Google Scholar 

  60. Guo, L.; Sun, Q.; Marcus, K.; Hao, Y.; Deng, J.; Bi, K.; Yang, Y. Photocatalytic glycerol oxidation on AuxCu-CuS@TiO2 plasmonic heterostructures. J. Mater. Chem. A 2018, 6, 22005–22012.

    Article  CAS  Google Scholar 

  61. Gan, Z. X.; Wu, X. L.; Meng, M.; Zhu, X. B.; Yang, L.; Chu, P. K. Photothermal contribution to enhanced photocatalytic performance of graphene-based nanocomposites. ACS Nano 2014, 8, 9304–9310.

    Article  CAS  Google Scholar 

  62. Ng, S. W. L.; Gao, M. M.; Lu, W. H.; Hong, M. H.; Ho, G. W. Selective wavelength enhanced photochemical and photothermal H2 generation of classical oxide supported metal catalyst. Adv. Funct. Mater. 2021, 31, 2104750.

    Article  CAS  Google Scholar 

  63. Wang, L.; Dong, Y. C.; Yan, T. J.; Hu, Z. X.; Jelle, A. A.; Meira, D. M.; Duchesne, P. N.; Loh, J. Y. Y.; Qiu, C. Y.; Storey, E. E. et al. Black indium oxide a photothermal CO2 hydrogenation catalyst. Nat. Commun. 2020, 11, 2432.

    Article  CAS  Google Scholar 

  64. Yang, M. Q.; Shen, L.; Lu, Y. Y.; Chee, S. W.; Lu, X.; Chi, X.; Chen, Z. H.; Xu, Q. H.; Mirsaidov, U.; Ho, G. W. Disorder engineering in monolayer nanosheets enabling photothermic catalysis for full solar spectrum (250–2500 nm) harvesting. Angew. Chem., Int. Ed. 2019, 58, 3077–3081.

    Article  CAS  Google Scholar 

  65. Jia, J.; Wang, H.; Lu, Z. L.; O’Brien, P. G.; Ghoussoub, M.; Duchesne, P.; Zheng, Z. Q.; Li, P. C.; Qiao, Q.; Wang, L. et al. Photothermal catalyst engineering: Hydrogenation of gaseous CO2 with high activity and tailored selectivity. Adv. Sci. 2017, 4, 1700252.

    Article  Google Scholar 

  66. Sun, M. Y.; Zhao, B. H.; Chen, F. P.; Liu, C. B.; Lu, S. Y.; Yu, Y. F.; Zhang, B. Thermally-assisted photocatalytic CO2 reduction to fuels. Chem. Eng. J. 2021, 408, 127280.

    Article  CAS  Google Scholar 

  67. Song, H.; Luo, S. Q.; Huang, H. M.; Deng, B. W.; Ye, J. H. Solar-driven hydrogen production: Recent advances, challenges, and future perspectives. ACS Energy Lett. 2022, 7, 1043–1065.

    Article  CAS  Google Scholar 

  68. Li, P. Y.; Liu, L.; An, W. J.; Wang, H.; Guo, H. X.; Liang, Y. H.; Cui, W. Q. Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C—C coupling photothermal catalytic reduction of CO2 to ethanol. Appl. Catal. B:Environ. 2020, 266, 118618.

    Article  CAS  Google Scholar 

  69. Liu, D. L.; Xu, Y.; Sun, M. Y.; Huang, Y.; Yu, Y. F.; Zhang, B. Photothermally assisted photocatalytic conversion of CO2-H2O into fuels over a WN-WO3 Z-scheme heterostructure. J. Mater. Chem. A 2020, 8, 1077–1083.

    Article  CAS  Google Scholar 

  70. Ghuman, K. K.; Wood, T. E.; Hoch, L. B.; Mims, C. A.; Ozin, G. A.; Singh, C. V. Illuminating CO2 reduction on frustrated Lewis pair surfaces: Investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O(3−x)(OH)y. Phys. Chem. Chem. Phys. 2015, 17, 14623–14635.

    Article  CAS  Google Scholar 

  71. Ghuman, K. K.; Hoch, L. B.; Szymanski, P.; Loh, J. Y. Y.; Kherani, N. P.; El-Sayed, M. A.; Ozin, G. A.; Singh, C. V. Photoexcited surface frustrated Lewis pairs for heterogeneous photocatalytic CO2 reduction. J. Am. Chem. Soc. 2016, 138, 1206–1214.

    Article  CAS  Google Scholar 

  72. Yu, F.; Wang, C. H.; Li, Y. Y.; Ma, H.; Wang, R.; Liu, Y. C.; Suzuki, N.; Terashima, C.; Ohtani, B.; Ochiai, T. et al. Enhanced solar photothermal catalysis over solution plasma activated TiO2. Adv. Sci. 2020, 7, 2000204.

    Article  CAS  Google Scholar 

  73. Ling, L. L.; Yang, W. J.; Yan, P.; Wang, M.; Jiang, H. L. Lightassisted CO2 hydrogenation over Pd3Cu@UiO-66 promoted by active sites in close proximity. Angew. Chem., Int. Ed. 2022, 61, e202116396.

    Article  CAS  Google Scholar 

  74. Liu, H. M.; Meng, X. G.; Dao, T. D.; Zhang, H. B.; Li, P.; Chang, K.; Wang, T.; Li, M.; Nagao, T.; Ye, J. H. Conversion of carbon dioxide by methane reforming under visible-light irradiation: Surface-plasmon-mediated nonpolar molecule activation. Angew. Chem., Int. Ed. 2015, 54, 11545–11549.

    Article  CAS  Google Scholar 

  75. Lu, B. W.; Quan, F. J.; Sun, Z.; Jia, F. L.; Zhang, L. Z. Photothermal reverse-water-gas-shift over Au/CeO2 with high yield and selectivity in CO2 conversion. Catal. Commun. 2019, 129, 105724.

    Article  CAS  Google Scholar 

  76. Liu, H. M.; Li, M.; Dao, T. D.; Liu, Y. Y.; Zhou, W.; Liu, L. Q.; Meng, X. G.; Nagao, T.; Ye, J. H. Design of PdAu alloy plasmonic nanoparticles for improved catalytic performance in CO2 reduction with visible light irradiation. Nano Energy 2016, 26, 398–404.

    Article  CAS  Google Scholar 

  77. Song, H.; Meng, X. G.; Dao, T. D.; Zhou, W.; Liu, H. M.; Shi, L.; Zhang, H. B.; Nagao, T.; Kako, T.; Ye, J. H. Light-enhanced carbon dioxide activation and conversion by effective plasmonic coupling effect of Pt and Au nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 408–416.

    Article  CAS  Google Scholar 

  78. Xu, C. Y.; Huang, W. H.; Li, Z.; Deng, B. W.; Zhang, Y. W.; Ni, M. J.; Cen, K. F. Photothermal coupling factor achieving CO2 reduction based on palladium-nanoparticle-loaded TiO2. ACS Catal. 2018, 8, 6582–6593.

    Article  CAS  Google Scholar 

  79. Docao, S.; Koirala, A. R.; Kim, M. G.; Hwang, I. C.; Song, M. K.; Yoon, K. B. Solar photochemical-thermal water splitting at 140 °C with Cu-loaded TiO2. Energy Environ. Sci. 2011, 10, 628–640.

    Article  Google Scholar 

  80. Zhou, L. N.; Martirez, J. M. P.; Finzel, J.; Zhang, C.; Swearer, D. F.; Tian, S.; Robatjazi, H.; Lou, M. H.; Dong, L. L.; Henderson, L. et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy 2020, 5, 61–70.

    Article  CAS  Google Scholar 

  81. Jia, J.; O’Brien, P. G.; He, L.; Qiao, Q.; Fei, T.; Reyes, L. M.; Burrow, T. E.; Dong, Y. C.; Liao, K.; Varela, M. et al. Visible and near-infrared photothermal catalyzed hydrogenation of gaseous CO2 over nanostructured Pd@Nb2O5. Adv. Sci. 2016, 3, 1600189.

    Article  Google Scholar 

  82. Mateo, D.; Albero, J.; García, H. Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Appl. Catal. B:Environ. 2018, 224, 563–571.

    Article  CAS  Google Scholar 

  83. Pan, F. P.; Xiang, X. M.; Du, Z. C.; Sarnello, E.; Li, T.; Li, Y. Integrating photocatalysis and thermocatalysis to enable efficient CO2 reforming of methane on Pt supported CeO2 with Zn doping and atomic layer deposited MgO overcoating. Appl. Catal. B:Environ. 2020, 260, 118189.

    Article  CAS  Google Scholar 

  84. Zhang, G. Q.; Wu, S. W.; Li, Y. Z.; Zhang, Q. Significant improvement in activity, durability, and light-to-fuel efficiency of Ni nanoparticles by La2O3 cluster modification for photothermocatalytic CO2 reduction. Appl. Catal. B:Environ. 2020, 264, 118544.

    Article  Google Scholar 

  85. Yang, H.; He, L. Q.; Hu, Y. W.; Lu, X. H.; Li, G. R.; Liu, B. J.; Ren, B.; Tong, Y. X.; Fang, P. P. Quantitative detection of photothermal and photoelectrocatalytic effects induced by SPR from Au@Pt nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 11462–11466.

    Article  CAS  Google Scholar 

  86. Zhang, X.; Li, X. Q.; Reish, M. E.; Zhang, D.; Su, N. Q.; Gutiérrez, Y.; Moreno, F.; Yang, W. T.; Everitt, H. O.; Liu, J. Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects. Nano Lett. 2018, 18, 1714–1723.

    Article  CAS  Google Scholar 

  87. Gao, M. M.; Peh, C. K.; Zhu, L. L.; Yilmaz, G.; Ho, G. W. Photothermal catalytic gel featuring spectral and thermal management for parallel freshwater and hydrogen production. Adv. Energy Mater. 2020, 10, 2000925.

    Article  CAS  Google Scholar 

  88. Huang, H.; Mao, M. Y.; Zhang, Q.; Li, Y. Z.; Bai, J. L.; Yang, Y.; Zeng, M.; Zhao, X. J. Solar-light-driven CO2 reduction by CH4 on silica-cluster-modified Ni nanocrystals with a high solar-to-fuel efficiency and excellent durability. Adv. Energy Mater. 2018, 8, 1702472.

    Article  Google Scholar 

  89. Li, X. Q.; Everitt, H. O.; Liu, J. Confirming nonthermal plasmonic effects enhance CO2 methanation on Rh/TiO2 catalysts. Nano Res. 2019, 12, 1906–1911.

    Article  CAS  Google Scholar 

  90. Robatjazi, H.; Zhao, H. Q.; Swearer, D. F.; Hogan, N. J.; Zhou, L. N.; Alabastri, A.; McClain, M. J.; Nordlander, P.; Halas, N. J. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nat. Commun. 2017, 8, 27.

    Article  Google Scholar 

  91. Cai, M. J.; Wu, Z. Y.; Li, Z.; Wang, L.; Sun, W.; Tountas, A. A.; Li, C. R.; Wang, S. H.; Feng, K.; Xu, A. B. et al. Greenhouse-inspired supra-photothermal CO2 catalysis. Nat. Energy 2021, 6, 807–814.

    Article  CAS  Google Scholar 

  92. Li, Y. G.; Hao, J. C.; Song, H.; Zhang, F. Y.; Bai, X. H.; Meng, X. G.; Zhang, H. Y.; Wang, S. F.; Hu, Y.; Ye, J. H. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nat. Commun. 2019, 10, 2359.

    Article  Google Scholar 

  93. Wang, Q.; Pornrungroj, C.; Linley, S.; Reisner, E. Strategies to improve light utilization in solar fuel synthesis. Nat. Energy 2022, 7, 13–24.

    Article  Google Scholar 

  94. Menges, F.; Mensch, P.; Schmid, H.; Riel, H.; Stemmer, A.; Gotsmann, B. Temperature mapping of operating nanoscale devices by scanning probe thermometry. Nat. Commun. 2016, 7, 10874.

    Article  CAS  Google Scholar 

  95. Mecklenburg, M.; Hubbard, W. A.; White, E. R.; Dhall, R.; Ronin, S. B.; Aloni, S.; Regan, B. C. Nanoscale temperature mapping in operating microelectronic devices. Science, 2015, 347, 629–632.

    Article  CAS  Google Scholar 

  96. Barella, M.; Violi, I. L.; Gargiulo, J.; Martinez, L. P.; Goschin, F.; Guglielmotti, V.; Pallarola, D.; Schlücker, S.; Pilo-Pais, M.; Acuna, G. P. et al. In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-Stokes thermometry. ACS Nano 2021, 15, 2458–2467.

    Article  CAS  Google Scholar 

  97. Feng, K.; Wang, S. H.; Zhang, D. K.; Wang, L.; Yu, Y. Y.; Feng, K.; Li, Z.; Zhu, Z. J.; Li, C. R.; Cai, M. J. et al. Cobalt plasmonic superstructures enable almost 100% broadband photon efficient CO2 photocatalysis. Adv. Mater. 2020, 32, 2000014.

    Article  CAS  Google Scholar 

  98. Mao, C. L.; Li, H.; Gu, H. G.; Wang, J. X.; Zou, Y. J.; Qi, G. D.; Xu, J.; Deng, F.; Shen, W. J.; Li, J. et al. Beyond the thermal equilibrium limit of ammonia synthesis with dual temperature zone catalyst powered by solar light. Chem 2019, 5, 2702–2717.

    Article  CAS  Google Scholar 

  99. Xie, S. B.; Iglesia, E.; Bell, A. T. Effects of temperature on the Raman spectra and dispersed oxides. J. Phys. Chem. B 2001, 105, 5144–5152.

    Article  CAS  Google Scholar 

  100. Song, C. Q.; Liu, X.; Xu, M.; Masi, D.; Wang, Y. G.; Deng, Y. C.; Zhang, M. T.; Qin, X. T.; Feng, K.; Yan, J. et al. Photothermal conversion of CO2 with tunable selectivity using Fe-based catalysts: From oxide to carbide. ACS Catal. 2020, 10, 10364–10374.

    Article  CAS  Google Scholar 

  101. Westrich, T. A.; Dahlberg, K. A.; Kaviany, M.; Schwank, J. W. High-temperature photocatalytic ethylene oxidation over TiO2. J. Phys. Chem. C 2011, 115, 16537–16543.

    Article  CAS  Google Scholar 

  102. Mahmoud, M. A. Reducing the photocatalysis induced by hot electrons of plasmonic nanoparticles due to tradeoff of photothermal heating. Phys. Chem. Chem. Phys. 2017, 19, 32016–32023.

    Article  CAS  Google Scholar 

  103. Li, Y.; Li, R. Z.; Li, Z. H.; Wei, W. Q.; Ouyang, S. X.; Yuan, H.; Zhang, T. R. Effect of support on catalytic performance of photothermal Fischer—Tropsch synthesis to produce lower olefins over Fe5C2-based catalysts. Chem. Res. Chin. Univ. 2020, 36, 1006–1012.

    Article  Google Scholar 

  104. Zhang, D. K.; Lv, K. X.; Li, C. R.; Fang, Y. S.; Wang, S. H.; Chen, Z. J.; Wu, Z. Y.; Guan, W. H.; Lou, D. Y.; Sun, W. et al. All-earth-abundant photothermal silicon platform for CO2 catalysis with nearly 100% sunlight harvesting ability. Sol. RRL 2021, 5, 2000387.

    Article  CAS  Google Scholar 

  105. Zhang, Z. S.; Mao, C. L.; Meira, D. M.; Duchesne, P. N.; Tountas, A. A.; Li, Z.; Qiu, C. Y.; Tang, S. L.; Song, R.; Ding, X. et al. New black indium oxide-tandem photothermal CO2-H2 methanol selective catalyst. Nat. Commun. 2022, 13, 1512.

    Article  CAS  Google Scholar 

  106. Ulmer, U.; Dingle, T.; Duchesne, P. N.; Morris, R. H.; Tavasoli, A.; Wood, T.; Ozin, G. A. Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 2019, 10, 3169.

    Article  Google Scholar 

  107. Cai, M. J.; Li, C. R.; He, L. Enhancing photothermal CO2 catalysis by thermal insulating substrates. Rare Met. 2020, 39, 881–886.

    Article  CAS  Google Scholar 

  108. Kong, N.; Han, B.; Li, Z.; Fang, Y. S.; Feng, K.; Wu, Z. Y.; Wang, S. H.; Xu, A. B.; Yu, Y. Y.; Li, C. R. et al. Ruthenium nanoparticles supported on Mg(OH)2 microflowers as catalysts for photothermal carbon dioxide hydrogenation. ACS Appl. Nano Mater. 2020, 3, 3028–3033.

    Article  CAS  Google Scholar 

  109. Liu, G. G.; Meng, X. G.; Zhang, H. B.; Zhao, G. X.; Pang, H.; Wang, T.; Li, P.; Kako, T.; Ye, J. H. Elemental boron for efficient carbon dioxide reduction under light irradiation. Angew. Chem., Int. Ed. 2017, 56, 5570–5574.

    Article  CAS  Google Scholar 

  110. Ren, J.; Ouyang, S. X.; Xu, H.; Meng, X. G.; Wang, T.; Wang, D. F.; Ye, J. H. Targeting activation of CO2 and H2 over Ru-loaded ultrathin layered double hydroxides to achieve efficient photothermal CO2 methanation in flow-type system. Adv. Energy Mater. 2017, 7, 1601657.

    Article  Google Scholar 

  111. Wu, Z. Y.; Li, C. R.; Li, Z.; Feng, K.; Cai, M. J.; Zhang, D. K.; Wang, S. H.; Chu, M. Y.; Zhang, C. C.; Shen, J. H. et al. Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis. ACS Nano 2021, 15, 5696–5705.

    Article  CAS  Google Scholar 

  112. Mateo, D.; Albero, J.; García, H. Titanium-perovskite-supported RuO2 nanoparticles for photocatalytic CO2 methanation. Joule 2019, 3, 1949–1962.

    Article  CAS  Google Scholar 

  113. Cho, Y.; Shoji, S.; Yamaguchi, A.; Hoshina, T.; Fujita, T.; Abe, H.; Miyauchi, M. Visible-light-driven dry reforming of methane using a semiconductor-supported catalyst. Chem. Commun. 2020, 56, 4611–4614.

    Article  CAS  Google Scholar 

  114. Li, Y.; Xue, J. B.; Shen, Q. Q.; Jia, S. F.; Li, Q.; Li, Y. X.; Liu, X. G.; Jia, H. S. Construction of a ternary spatial junction in yolk—shell nanoreactor for efficient photo-thermal catalytic hydrogen generation. Chem. Eng. J. 2021, 423, 130188.

    Article  CAS  Google Scholar 

  115. Zhang, H. W.; Itoi, T.; Konishi, T.; Izumi, Y. Dual photocatalytic roles of light: Charge separation at the band gap and heat via localized surface plasmon resonance to convert CO2 into CO over silver-zirconium oxide. J. Am. Chem. Soc. 2019, 141, 6292–6301.

    Article  CAS  Google Scholar 

  116. Song, R.; Luo, B.; Geng, J. F.; Song, D. X.; Jing, D. W. Photothermocatalytic hydrogen evolution over Ni2P/TiO2 for full-spectrum solar energy conversion. Ind. Eng. Chem. Res. 2018, 57, 7846–7854.

    Article  CAS  Google Scholar 

  117. Caudillo-Flores, U.; Agostini, G.; Marini, C.; Kubacka, A.; Fernández-García, M. Hydrogen thermo-photo production using Ru/TiO2: Heat and light synergistic effects. Appl. Catal. B:Environ. 2019, 256, 117790.

    Article  Google Scholar 

  118. Fang, S. Y.; Sun, Z. X.; Hu, Y. H. Insights into the thermo-photo catalytic production of hydrogen from water on a low-cost NiOx-loaded TiO2 catalyst. ACS Catal. 2019, 9, 5047–5056.

    Article  CAS  Google Scholar 

  119. Ha, M. N.; Lu, G. Z.; Liu, Z. F.; Wang, L. C.; Zhao, Z. 3DOM-LaSrCoFeO6−δ as a highly active catalyst for the thermal and photothermal reduction of CO2 with H2O to CH4. J. Mater. Chem. A 2016, 4, 13155–13165.

    Article  CAS  Google Scholar 

  120. Wang, L. C.; Wang, Y.; Cheng, Y.; Liu, Z. F.; Guo, Q. S.; Ha, M. N.; Zhao, Z. Hydrogen-treated mesoporous WO3 as a reducing agent of CO2 to fuels (CH4 and CH3OH) with enhanced photothermal catalytic performance. J. Mater. Chem. A 2016, 4, 5314–5322.

    Article  CAS  Google Scholar 

  121. Lin, L. L.; Wang, K.; Yang, K.; Chen, X.; Fu, X. Z.; Dai, W. X. The visible-light-assisted thermocatalytic methanation of CO2 over Ru/TiO(2−x)Nx. Appl. Catal. B:Environ. 2017, 204, 440–455.

    Article  CAS  Google Scholar 

  122. Zhang, H. B.; Wang, T.; Wang, J. J.; Liu, H. M.; Dao, T. D.; Li, M.; Liu, G. G.; Meng, X. G.; Chang, K.; Shi, L. et al. Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal-organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv. Mater. 2016, 28, 3703–3710.

    Article  CAS  Google Scholar 

  123. Wang, Z. J.; Song, H.; Pang, H.; Ning, Y. X.; Dao, T. D.; Wang, Z.; Chen, H. L.; Weng, Y. X.; Fu, Q.; Nagao, T. et al. Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts. Appl. Catal. B: Environ. 2019, 250, 10–16.

    Article  CAS  Google Scholar 

  124. Wang, L.; Ghoussoub, M.; Wang, H.; Shao, Y.; Sun, W.; Tountas, A. A.; Wood, T. E.; Li, H.; Loh, J. Y. Y.; Dong, Y. C. et al. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure. Joule 2018, 2, 1369–1381.

    Article  CAS  Google Scholar 

  125. Han, K. H.; Wang, Y.; Wang, S.; Liu, Q. Y.; Deng, Z. Y.; Wang, F. G. Narrowing band gap energy of CeO2 in (Ni/CeO2)@SiO2 catalyst for photothermal methane dry reforming. Chem. Eng. J. 2021, 421, 129989.

    Article  CAS  Google Scholar 

  126. Wang, C.; Su, Y.; Tavasoli, A.; Sun, W.; Wang, L.; Ozin, G. A.; Yang, D. Recent advances in nanostructured catalysts for photoassisted dry reforming of methane. Mater. Today Nano 2021, 14, 100113.

    Article  CAS  Google Scholar 

  127. Liu, H. M.; Song, H.; Zhou, W.; Meng, X. G.; Ye, J. H. A promising application of optical hexagonal TaN in photocatalytic reactions. Angew. Chem., Int. Ed. 2018, 57, 16781–16784.

    Article  CAS  Google Scholar 

  128. Li, Z. H.; Shi, R.; Zhao, J. Q.; Zhang, T. R. Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system. Nano Res. 2021, 14, 4828–4832.

    Article  CAS  Google Scholar 

  129. Liu, H. M.; Meng, X. G.; Dao, T. D.; Liu, L. Q.; Li, P.; Zhao, G. X.; Nagao, T.; Yang, L. Q.; Ye, J. H. Light assisted CO2 reduction with methane over SiO2 encapsulated Ni nanocatalysts for boosted activity and stability. J. Mater. Chem. A 2017, 5, 10567–10573.

    Article  CAS  Google Scholar 

  130. Sun, W.; Cao, X. E. Photothermal CO2 catalysis: From catalyst discovery to reactor design. Chem Catal. 2022, 2, 215–217.

    Article  Google Scholar 

  131. Cao, X. E.; Kaminer, Y.; Hong, T.; Schein, P.; Liu, T. W.; Hanrath, T.; Erickson, D. HI-Light: A glass-waveguide-based “shell-and-tube” photothermal reactor platform for converting CO2 to fuels. iScience 2020, 23, 101856.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the financial support from the A*STAR under its 2019 AME IRG & YIRG Grant Calls, A2083c0059 and Central Gap Fund NRF2020NRF-CG001-023 and TAP25002021-01-01-RIE2025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghim Wei Ho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Zhang, T. & Ho, G.W. Advances of photothermal chemistry in photocatalysis, thermocatalysis, and synergetic photothermocatalysis for solar-to-fuel generation. Nano Res. 15, 9985–10005 (2022). https://doi.org/10.1007/s12274-022-4795-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4795-3

Keywords

Navigation