Skip to main content
Log in

Dual single-atom Ce-Ti/MnO2 catalyst enhances low-temperature NH3-SCR performance with high H2O and SO2 resistance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Mn-based catalysts have exhibited promising performance in low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR). However, challenges such as H2O- or SO2-induced poisoning to these catalysts still remain. Herein, we report an efficient strategy to prepare the dual single-atom Ce-Ti/MnO2 catalyst via ball-milling and calcination processes to address these issues. Ce-Ti/MnO2 showed better catalytic performance with a higher NO conversion and enhanced H2O- and SO2-resistance at a low-temperature window (100–150 °C) than the MnO2, single-atom Ce/MnO2, and Ti/MnO2 catalysts. The in situ infrared Fourier transform spectroscopy analysis confirmed there is no competitive adsorption between NOx and H2O over the Ce-Ti/MnO2 catalyst. The calculation results showed that the synergistic interaction of the neighboring Ce-Ti dual atoms as sacrificial sites weakens the ability of the active Mn sites for binding SO2 and H2O but enhances their binding to NH3. The insight obtained in this work deepens the understanding of catalysis for NH3-SCR. The synthesis strategy developed in this work is easily scaled up to commercialization and applicable to preparing other MnO2-based single-atom catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo, K.; Ji, J. W.; Song, W.; Sun, J. F.; Tang, C. J.; Dong, L. Conquering ammonium bisulfate poison over low-temperature NH3-SCR catalysts: A critical review. Appl. Catal. B Environ. 2021, 297, 120388.

    Article  CAS  Google Scholar 

  2. Han, L. P.; Cai, S. X.; Gao, M.; Hasegawa, J. Y.; Wang, P. L.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects. Chem Rev. 2019, 119, 10916–10976.

    Article  CAS  Google Scholar 

  3. Lai, J. K.; Wachs, I. E. A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5-WO3/TiO2 catalysts. ACS Catal. 2018, 8, 6537–6551.

    Article  CAS  Google Scholar 

  4. Liu, Z.; Sun, G. X.; Chen, C.; Sun, K. A.; Zeng, L. Y.; Yang, L. Z.; Chen, Y. J.; Wang, W. H.; Liu, B.; Lu, Y. K. et al. Fe-doped Mn3O4 spinel nanoparticles with highly exposed Feoct-O-Mntet sites for efficient selective catalytic reduction (SCR) of NO with ammonia at low temperatures. ACS Catal. 2020, 10, 6803–6809.

    Article  CAS  Google Scholar 

  5. Wang, X. M.; Li, X. Y.; Zhao, Q. D.; Sun, W. B.; Tade M.; Liu, S. M. Improved activity of W-modified MnOx-TiO2 catalysts for the selective catalytic reduction of NO with NH3. Chem. Eng. J. 2016, 288, 216–222.

    Article  CAS  Google Scholar 

  6. Chen, L.; Yang, J.; Ren, S.; Chen, Z. C.; Zhou, Y. H.; Liu, W. Z. Effects of Sm modification on biochar supported Mn oxide catalysts for low-temperature NH3-SCR of NO. J. Energy Inst. 2021, 98, 234–243.

    Article  CAS  Google Scholar 

  7. Gao, G.; Shi, J. W.; Fan, Z. Y.; Gao, C.; Niu, C. M. MnM2O4 microspheres (M = Co, Cu, Ni) for selective catalytic reduction of NO with NH3: Comparative study on catalytic activity and reaction mechanism via in-situ diffuse reflectance infrared Fourier transform spectroscopy. Chem. Eng. J. 2017, 325, 91–100.

    Article  CAS  Google Scholar 

  8. Wang, H. M.; Ning, P.; Zhang, Y. Q.; Ma, Y. P.; Wang, J. F.; Wang, L. Y.; Zhang, Q. L. Highly efficient WO3-FeOx catalysts synthesized using a novel solvent-free method for NH3-SCR. J. Hazard. Mater. 2020, 388, 121812.

    Article  CAS  Google Scholar 

  9. Jiang, L. J.; Liang, Y.; Liu, W. Z.; Wu, H. L.; Aldahri, T.; Carrero, D. S.; Liu, Q. C. Synergistic effect and mechanism of FeOx and CeOx co-doping on the superior catalytic performance and SO2 tolerance of Mn-Fe-Ce/ACN catalyst in low-temperature NH3-SCR of NOx. J. Environ. Chem. Eng. 2021, 9, 106360.

    Article  CAS  Google Scholar 

  10. Hao, Z. F.; Shen, Z. R.; Li, Y.; Wang, H. T.; Zheng, L. R.; Wang, R. H.; Liu, G. Q.; Zhan, S. H. The Role of alkali metal in a-MnO2 catalyzed ammonia-selective catalysis. Angew. Chem., Int. Ed. 2019, 58, 6351–6356.

    Article  CAS  Google Scholar 

  11. Tarach, K. A.; Jabłońska, M.; Pyra, K.; Liebau, M.; Reiprich, B.; Gläser, R.; Góra-Marek, K. Effect of zeolite topology on NH3-SCR activity and stability of Cu-exchanged zeolites. Appl. Catal. B Environ. 2021, 284, 119752.

    Article  CAS  Google Scholar 

  12. Chen, L.; Janssens, T. V. W.; Vennestrøm, P. N. R.; Jansson, J.; Skoglundh, M.; Grónbeck, H. A complete multisite reaction mechanism for low-temperature NH3-SCR over Cu-CHA. ACS Catal. 2020, 10, 5646–5656.

    Article  CAS  Google Scholar 

  13. Sun, C. Z.; Liu, H.; Chen, W.; Chen, D. Z.; Yu, S. H.; Liu, A. N.; Dong, L.; Feng, S. Insights into the Sm/Zr co-doping effects on N2 selectivity and SO2 resistance of a MnOx-TiO2 catalyst for the NH3-SCR reaction. Chem. Eng. J. 2018, 347, 27–40.

    Article  CAS  Google Scholar 

  14. Liu, H.; Sun, C. Z.; Fan, Z. X.; Jia, X. X.; Sun, J. F.; Gao, F.; Tang, C. J.; Dong, L. Doping effect of Sm on the TiO2/CeSmOx catalyst in the NH3-SCR reaction: Structure–activity relationship, reaction mechanism and SO2 tolrannee. Catal. Sci. Technol. 2019, 9, 3554–3567.

    Article  CAS  Google Scholar 

  15. Fang, X.; Liu, Y. J.; Cheng, Y.; Cen, W. L. Mechanism of Cemodified birnessite-MnO2 in promoting SO2 poisoning resistance for low-temperature NH3-SCR. ACS Catal. 2021, 11, 4125–4135.

    Article  CAS  Google Scholar 

  16. Fan, A. D.; Jing, Y.; Guo, J. X.; Shi, X. K.; Yuan, S. D.; Li, J. J. Investigation of Mn doped perovskite La-Mn oxides for NH3-SCR activity and SO2/H2O resistance. Fuel. 2022, 310, 122237.

    Article  CAS  Google Scholar 

  17. Chen, L. Q.; Niu, X. Y.; Li, Z. B.; Dong, Y. L.; Zhang, Z. P.; Yuan, F. L.; Zhu, Y. J. Promoting catalytic performances of Ni-Mn spinel for NH3-SCR by treatment with SO2 and H2O. Catal Commun. 2016, 85, 48–51.

    Article  CAS  Google Scholar 

  18. Pan, S. W.; Luo, H. C.; Li, L.; Wei, Z. L.; Huang, B. C. H2O and SO2 deactivation mechanism of MnOx/MWCNTs for low-temperature SCR of NOx with NH3. J. Mol. Catal. A Chem. 2013, 377, 154–161.

    Article  CAS  Google Scholar 

  19. Chang, H. Z.; Chen, X. Y.; Li, J. H.; Ma, L.; Wang, C. Z.; Liu, C. X.; Schwank, J. W.; Hao, J. M. Improvement of activity and SO2 tolerance of Sn-modified MnOx-CeO2 catalysts for NH3-SCR at low temperatures. Environ. Sci. Technol. 2013, 47, 5294–5301.

    Article  CAS  Google Scholar 

  20. Kijlstra, W. S.; Biervliet, B.; Poels, E. K.; Bliek, A. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal. B Environ. 1998, 16, 327–337.

    Article  Google Scholar 

  21. Chen, L. Q.; Li, R.; Li, Z. B.; Yuan, F. L.; Niu, X. Y.; Zhu, Y. J. Effect of Ni doping in NixMn1−xTi10 (x = 0.1−0.5) on activity and SO2 resistance for NH3-SCR of NO studied with in situ DRIFTS. Catal. Sci. Technol. 2017, 7, 3243–3257.

    Article  CAS  Google Scholar 

  22. Wang, X. F.; Zhao, Z.; Xu, Y.; Li, Q. B. Promoting effect of Ti addition on three-dimensionally ordered macroporous Mn-Ce catalysts for NH3-SCR reaction: Enhanced N2 selectivity and remarkable water resistance. Appl. Surf. Sci. 2021, 569, 151047.

    Article  CAS  Google Scholar 

  23. Jin, R. B.; Liu, Y.; Wang, Y.; Cen, W. L.; Wu, Z. B.; Wang, H. Q.; Weng, X. L. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature. Appl. Catal. B Environ. 2014, 148, 582–588.

    Article  Google Scholar 

  24. Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

    Article  CAS  Google Scholar 

  25. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  26. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    Article  CAS  Google Scholar 

  27. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Article  CAS  Google Scholar 

  28. Fu, N. H.; Liang, X.; Li, Z.; Chen, W. X.; Wang, Y.; Zheng, L. R.; Zhang, Q. H.; Chen, C.; Wang, D. S.; Peng, Q. et al. Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Res. 2020, 13, 947–951.

    Article  CAS  Google Scholar 

  29. Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    Article  CAS  Google Scholar 

  30. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    Article  CAS  Google Scholar 

  31. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Technol. 2022, 1, 100013.

    Google Scholar 

  32. Hou, Z. Q.; Dai, L. Y.; Deng, J. G.; Zhao, G. F.; Jing, L.; Wang, Y. S.; Yu, X. H.; Gao, R. Y.; Tian, X. R.; Dai, H. X. et al. Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO catalyst. Angew. Chem., Int. Ed. 2022, 61, e202201655.

    Article  CAS  Google Scholar 

  33. Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin n-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

    Article  CAS  Google Scholar 

  34. Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dualatom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

    Article  CAS  Google Scholar 

  35. Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2022, e202205946.

  36. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res., in press, https://doi.org/10.1007/s12274-022-4429-9.

  37. Wu, Y. Y.; Ye, C. C.; Yu, L.; Liu, Y. F.; Huang, J. F.; Bi, J. B.; Xue, L.; Sun, J. W.; Yang, J.; Zhang, W. Q. et al. Soft template-directed interlayer confinement synthesis of a Fe-Co dual single-atom catalyst for Zn-air batteries. Energy Stor. Mater. 2022, 45, 805–813.

    Google Scholar 

  38. Ma, C. B.; Xu, Y. P.; Wu, L. X.; Wang, Q.; Zheng, J. J.; Ren, G. X.; Wang, X. Y.; Gao, X. F.; Zhou, M.; Wang, M. et al. Guided synthesis of a Mo/Zn dual single-atom nanozyme with synergistic effect and peroxidase-like activity. Angew. Chem., Int. Ed. 2022, 134, e202116170.

    Article  Google Scholar 

  39. Chen, Z. Y.; Su, X. Z.; Ding, J.; Yang, N.; Zuo, W. B.; He, Q. Y.; Wei, Z. M.; Zhang, Q.; Huang, J.; Zhai, Y. M. Boosting oxygen reduction reaction with Fe and Se dual-atom sites supported by nitrogen-doped porous carbon. Appl. Catal. B Environ. 2022, 308, 121206.

    Article  CAS  Google Scholar 

  40. Shi, Q.; Ji, Y. J.; Chen, W. X.; Zhu, Y. X.; Li, J.; Liu, H. Z.; Li, Z.; Tian, S. B.; Wang, L. G.; Zhong, Z. Y. et al. Single-atom Sn-Zn pairs in CuO catalyst promote dimethyldichlorosilane synthesis. Natl. Sci. Rev. 2020, 7, 600–608.

    Article  CAS  Google Scholar 

  41. Wu, S. P.; Liu, H. M.; Huang, Z.; Xu, H. L.; Shen, W. O-vacancy-rich porous MnO2 nanosheets as highly efficient catalysts for propane catalytic oxidation. Appl. Catal. B Environ. 2022, 312, 121387.

    Article  CAS  Google Scholar 

  42. Huang, N.; Qu, Z. P.; Dong, C.; Qin, Y.; Duan, X. X. Superior performance of α@β-MnO2 for the toluene oxidation: Active interface and oxygen vacancy. Appl. Catal. A Gen. 2018, 600, 195–205.

    Article  Google Scholar 

  43. Zhu, G. X.; Zhu, J. G.; Jiang, W. J.; Zhang, Z. J.; Wang, J.; Zhu, Y. F.; Zhang, Q. F. Surface oxygen vacancy induced a-MnO2 nanofiber for highly efficient ozone elimination. Appl. Catal. B Environ. 2017, 209, 729–737.

    Article  CAS  Google Scholar 

  44. Xie, Y. J.; Yu, Y. Y.; Gong, X. Q.; Guo, Y.; Guo, Y. L.; Wang, Y. Q.; Lu, G. Z. Effect of the crystal plane figure on the catalytic performance of MnO2 for the total oxidation of propane. CrystEngComm. 2015, 17, 3005–3014.

    Article  CAS  Google Scholar 

  45. He, X. H.; Deng, Y. C.; Zhang, Y.; He, Q.; Xiao, D. Q.; Peng, M.; Zhao, Y.; Zhang, H.; Luo, R. C.; Gan, T. et al. Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts. Cell Rep. Phys. Sci. 2020, 1, 100004.

    Article  Google Scholar 

  46. Thirupathi, B.; Smirniotis, P. G. Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Appl. Catal. B Environ. 2011, 110, 195–206.

    Article  CAS  Google Scholar 

  47. Thirupathi, B.; Smirniotis, P. G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. J. Catal. 2012, 288, 74–83.

    Article  CAS  Google Scholar 

  48. Boningari, T.; Pappas, D. K.; Ettireddy, P. R.; Kotrba, A.; Smirniotis, P. G. Influence of SiO2 on M/TiO2 (M = Cu, Mn, and Ce) formulations for low-temperature selective catalytic reduction of NOx with NH3: Surface properties and key components in relation to the activity of NOx eeduction. Ind. Eng. Chem. Res. 2015, 44, 2261–2273.

    Article  Google Scholar 

  49. Kwon, D. W.; Nam, K. B.; Hong, S. C. Influence of tungsten on the activity of a Mn/Ce/W/Ti catalyst for the selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal. A Gen. 2015, 497, 160–166.

    Article  CAS  Google Scholar 

  50. Werfel, F.; Brümmer, O. Corundum structure oxides studied by XPS. Phys Scr. 1983, 28, 92–96.

    Article  CAS  Google Scholar 

  51. Ingo, G. M.; Paparazzo, E.; Bagnarelli, O.; Zacchetti, N. XPS studies on cerium, zirconium and yttrium valence states in plasma-sprayed coatings. Surf Interface Anal. 1990, 16, 515–519.

    Article  CAS  Google Scholar 

  52. Gao, F. Y.; Tang, X. L.; Yi, H. H.; Zhao, S. Z.; Wang, J. G.; Shi, Y. R.; Meng, X. M. Novel Co-or Ni-Mn binary oxide catalysts with hydroxyl groups for NH3-SCR of NOx at low temperature. Appl. Surf. Sci. 2018, 443, 103–113.

    Article  CAS  Google Scholar 

  53. Zhao, B. H.; Ran, R.; Guo, X. G.; Cao, L.; Xu, T. F.; Chen, Z.; Wu, X. D.; Si, Z. C.; Weng, D. Nb-modified Mn/Ce/Ti catalyst for the selective catalytic reduction of NO with NH3 at low temperature. Appl. Catal. A Gen. 2017, 545, 64–71.

    Article  CAS  Google Scholar 

  54. Gao, F. Y.; Tang, X. L.; Yi, H. H.; Li, J. Y.; Zhao, S. Z.; Wang, J. E.; Chu, C.; Li, C. L. Promotional mechanisms of activity and SO2 tolerance of Co-or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature. Chem. Eng. J. 2017, 317, 20–31.

    Article  CAS  Google Scholar 

  55. Ma, S. B.; Zhao, X. Y.; Li, Y. S.; Zhang, T. R.; Yuan, F. L.; Niu, X. Y.; Zhu, Y. J. Effect of W on the acidity and redox performance of the Cu0.02Fe0.2WaTiOx (a = 0.01, 0.02, 0.03) catalysts for NH3-SCR of NO. Appl. Catal. B Environ. 2019, 248, 226–238.

    Article  CAS  Google Scholar 

  56. Ida, S.; Kim, N.; Ertekin, E.; Takenaka, S.; Ishihara, T. Photocatalytic reaction centers in two-dimensional titanium oxide crystals. J. Am. Chem. Soc. 2015, 137, 239–244.

    Article  CAS  Google Scholar 

  57. Yang, S. J.; Wang, C. Z.; Li, J. H.; Yan, N. Q.; Ma, L.; Chang, H. Z. Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel: Performance, mechanism and kinetic study. Appl. Catal. B Environ. 2011, 110, 71–80.

    Article  CAS  Google Scholar 

  58. Ding, S. P.; Liu, F. D.; Shi, X. Y.; Liu, K.; Lian, Z. H.; Xie, L. J.; Hong, H. Significant promotion effect of Mo additive on a novel Ce-Zr mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. ACS Appl. Mater. Interfaces 2015, 7, 9497–9506.

    Article  CAS  Google Scholar 

  59. Meng, D. M.; Zhan, W. C.; Guo, Y.; Guo, G. L.; Wang, L.; Lu, G. Z. A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature: Promotional role of Sm and its catalytic performance. ACS Catal. 2015, 5, 5973–5983.

    Article  CAS  Google Scholar 

  60. Qi, G. S.; Yang, R. T. Characterization and FT-IR studies of MnOx-CeO2 catalyst for low-temperature SCR of NO with NH3. J. Phys. Chem. B. 2004, 108, 15738–15747.

    Article  CAS  Google Scholar 

  61. Wang, B.; Wang, M. X.; Han, L. N.; Hou, Y. Q.; Bao, W. R.; Zhang, C. M.; Feng, G.; Chang, L. P.; Huang, Z. G.; Wang, J. C. Improved activity and SO2 resistance by Sm-modulated redox of MnCeSmTiOx mesoporous amorphous oxides for low-temperature NH3-SCR of NO. ACS Catal. 2020, 10, 9034–9045.

    Article  CAS  Google Scholar 

  62. Peña, D. A.; Uphade, B. S.; Reddy, E. P.; Smirniotis, P. G. Identification of surface species on titania-supported manganese, chromium, and copper oxide low-temperature SCR catalysts. J. Phys. Chem. B 2004, 108, 9927–9936.

    Article  Google Scholar 

  63. Gao, C.; Xiao, B.; Shi, J. W.; He, C.; Wang, B. R.; Ma, D. D.; Cheng, Y. H.; Niu, C. M. Comprehensive understanding the promoting effect of Dy-doping on MnFeOx nanowires for the low-temperature NH3-SCR of NOx: An experimental and theoretical study. J. Catal. 2019, 380, 55–67.

    Article  CAS  Google Scholar 

  64. Fu, Z. H.; Zhang, G. D.; Han, W. L.; Tang, Z. C. The water resistance enhanced strategy of Mn based SCR catalyst by construction of TiO2 shell and superhydrophobic coating. Chem. Eng. J. 2021, 426, 131334.

    Article  CAS  Google Scholar 

  65. Li, Y. L.; Han, X. J.; Hou, Y. Q.; Guo, Y. P.; Liu, Y. J.; Cui, Y.; Huang, Z. G. Role of CTAB in the improved H2O resistance for selective catalytic reduction of NO with NH3 over iron titanium catalyst. Chem. Eng. J. 2018, 347, 313–321.

    Article  CAS  Google Scholar 

  66. Zhao, P. P.; Guo, M. Y.; Liu, Q. L.; Fan, L. J.; Han, J. F.; Liu, C. X.; Ji, N.; Song, C. F.; Ma, D. G.; Li, Z. G. Novel MnaZrbCrcOx catalysts for low temperature NH3-SCR derived from high H2O content flue gas via natural gas combustion. Chem. Eng. J. 2019, 378, 122100.

    Article  CAS  Google Scholar 

  67. Xie, R. Y.; Ma, L.; Li, Z. H.; Qu, Z.; Yan, N. Q.; Li, J. H. Review of sulfur promotion effects on metal oxide catalysts for NOx emission control. ACS Catal. 2021, 11, 13119–13139.

    Article  CAS  Google Scholar 

  68. Ma, L.; Seo, C. Y.; Nahata, M.; Chen, X. Y.; Li, J. H.; Schwank, J. W. Shape dependence and sulfate promotion of CeO2 for selective catalytic reduction of NOx with NH3. Appl. Catal. B Environ. 2018, 232, 246–259.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Nos. 52070180, 51938014, and 21802054), the Science Research Project of the Ministry of Education of the Heilongjiang Province of China (No. 145109102), and the Beijing Chenxi Environmental Engineering Co., Ltd. Z. Z. thanks the financial support of Guangdong Key discipline fund for this collaboration. Y. J. thanks the financial supports from the Outstanding Youth cultivation program of Beijing Technology and Business University (No. 19008021144) and Research Foundation for Advanced Talents of Beijing Technology and Business University (No. 19008020159).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongjun Ji, Wenqing Xu, Bing Liu, Wenxing Chen, Lihua Jia or Fabing Su.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Liu, S., Ji, Y. et al. Dual single-atom Ce-Ti/MnO2 catalyst enhances low-temperature NH3-SCR performance with high H2O and SO2 resistance. Nano Res. 16, 299–308 (2023). https://doi.org/10.1007/s12274-022-4790-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4790-8

Keywords

Navigation