Skip to main content
Log in

Spontaneous relaxation of 2D passivation layer contributes to the aging-induced performance enhancement of perovskite solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The aging-induced performance enhancement of the perovskite solar cells (PSCs) has been considered to be associated with the oxidation progress of the hole-transporting layer. Whereas the influence of the structural evolution of the passivation layer is underestimated. In this work, a spontaneous relaxation of two-dimensional (2D) passivation layer with increased n-value structure is observed, which can be accelerated under ambient atmosphere. It is demonstrated that device with relaxed 2D passivation layer exhibits reduced non-radiative recombination and optimized charge transfer property, contributing substantially to the aging-induced performance enhancement in 2D-3D heterostructured PSCs. Finally, a high fill factor of 84.15% of the devices is obtained with the relaxed 2D passivation layer, suggesting the spontaneous relaxation of 2D passivation layer is playing a key role in achieving high quality optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

    Article  CAS  Google Scholar 

  2. Cai, B.; Xing, Y. D.; Yang, Z.; Zhang, W. H.; Qiu, J. S. High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ. Sci. 2013, 6, 1480–1485.

    Article  CAS  Google Scholar 

  3. Best Research-Cell Efficiency Chart [Online] https://www.nrel.gov/pv/cell-efficiency.html (accessed Apr 20, 2022)

  4. Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466.

    Article  CAS  Google Scholar 

  5. Yu, W. J.; Sun, X. R.; Xiao, M.; Hou, T.; Liu, X.; Zheng, B. L.; Yu, H.; Zhang, M.; Huang, Y. L.; Hao, X. J. Recent advances on interface engineering of perovskite solar cells. Nano Res. 2022, 15, 85–103.

    Article  CAS  Google Scholar 

  6. Ricciardulli, A. G.; Yang, S.; Smet, J. H.; Saliba, M. Emerging perovskite monolayers. Nat. Mater. 2021, 20, 1325–1336.

    Article  CAS  Google Scholar 

  7. Chen, P.; Bai, Y.; Wang, S. C.; Lyu, M. Q.; Yun, J. H.; Wang, L. Z. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 2018, 28, 1706923.

    Article  Google Scholar 

  8. Lin, Y.; Bai, Y.; Fang, Y. J.; Chen, Z. L.; Yang, S.; Zheng, X. P.; Tang, S.; Liu, Y.; Zhao, J. J.; Huang, J. S. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J. Phys. Chem. Lett. 2018, 9, 654–658.

    Article  CAS  Google Scholar 

  9. Liu, Y. H.; Akin, S.; Hinderhofer, A.; Eickemeyer, F. T.; Zhu, H. W.; Seo, J. Y.; Zhang, J. H.; Schreiber, F.; Zhang, H.; Zakeeruddin, S. M. et al. Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers. Angew. Chem., Int. Ed. 2020, 59, 15688–15694.

    Article  CAS  Google Scholar 

  10. Wu, G. B.; Liang, R.; Ge, M. Z.; Sun, G. X.; Zhang, Y.; Xing, G. C. Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Adv. Mater. 2022, 34, 2105635.

    Article  CAS  Google Scholar 

  11. Akin, S.; Dong, B. T.; Pfeifer, L.; Liu, Y. H.; Graetzel, M.; Hagfeldt, A. Organic ammonium halide modulators as effective strategy for enhanced perovskite photovoltaic performance. Adv. Sci. 2021, 8, 2004593.

    Article  CAS  Google Scholar 

  12. Zhang, C. L.; Wu, S. H.; Tao, L. M.; Arumugam, G. M.; Liu, C.; Wang, Z.; Zhu, S. S.; Yang, Y. Z.; Lin, J.; Liu, X. Y. et al. Fabrication strategy for efficient 2D/3D perovskite solar cells enabled by diffusion passivation and strain compensation. Adv. Energy Mater. 2020, 10, 2002004.

    Article  CAS  Google Scholar 

  13. Sutanto, A. A.; Caprioglio, P.; Drigo, N.; Hofstetter, Y. J.; Garcia-Benito, I.; Queloz, V. I. E.; Neher, D.; Nazeeruddin, M. K.; Stolterfoht, M.; Vaynzof, Y. et al. 2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells. Chem 2021, 7, 1903–1916.

    Article  CAS  Google Scholar 

  14. Liu, T. T.; Zhang, J.; Qin, M. C.; Wu, X.; Li, F. Z.; Lu, X. H.; Zhu, Z. L.; Jen, A. K. Y. Modifying surface termination of CsPbI3 grain boundaries by 2D perovskite layer for efficient and stable photovoltaics. Adv. Funct. Mater. 2021, 31, 2009515.

    Article  CAS  Google Scholar 

  15. Cheng, Q.; Xia, H. R.; Li, X.; Wang, B. X.; Li, Y. X.; Zhang, X. N.; Zhang, H.; Zhang, Y.; Zhou, H. Q. High-efficiency and stable perovskite solar cells enabled by low-dimensional perovskite surface modifiers. Solar RRL, in press, DOI: https://doi.org/10.1002/solr.202100805.

  16. Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M. et al. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 2017, 8, 15684.

    Article  CAS  Google Scholar 

  17. He, M. S.; Liang, J. H.; Zhang, Z. F.; Qiu, Y. K.; Deng, Z. H.; Xu, H.; Wang, J. L.; Yang, Y. J.; Chen, Z. H.; Chen, C. C. Compositional optimization of a 2D-3D heterojunction interface for 22.6% efficient and stable planar perovskite solar cells. J. Mater. Chem. A 2020, 8, 25831–25841.

    Article  CAS  Google Scholar 

  18. Hawash, Z.; Ono, L. K.; Qi, Y. B. Moisture and oxygen enhance conductivity of LiTFSI-doped spiro-MeOTAD hole transport layer in perovskite solar cells. Adv. Mater. Interfaces 2016, 3, 1600117.

    Article  Google Scholar 

  19. Cho, Y.; Kim, H. D.; Zheng, J. H.; Bing, J. M.; Li, Y.; Zhang, M.; Green, M. A.; Wakamiya, A.; Huang, S. J.; Ohkita, H. et al. Elucidating mechanisms behind ambient storage-induced efficiency improvements in perovskite solar cells. ACS Energy Lett. 2021, 6, 925–933.

    Article  CAS  Google Scholar 

  20. Roose, B.; Ummadisingu, A.; Correa-Baena, J. P.; Saliba, M.; Hagfeldt, A.; Graetzel, M.; Steiner, U.; Abate, A. Spontaneous crystal coalescence enables highly efficient perovskite solar cells. Nano Energy 2017, 39, 24–29.

    Article  CAS  Google Scholar 

  21. Fei, C. B.; Wang, H. Age-induced recrystallization in perovskite solar cells. Org. Electron. 2019, 68, 143–150.

    Article  CAS  Google Scholar 

  22. Bi, C.; Zheng, X. P.; Chen, B.; Wei, H. T.; Huang, J. S. Spontaneous passivation of hybrid perovskite by sodium ions from glass substrates: Mysterious enhancement of device efficiency revealed. ACS Energy Lett. 2017, 2, 1400–1406.

    Article  CAS  Google Scholar 

  23. Moghadamzadeh, S.; Hossain, I. M.; Jakoby, M.; Nejand, B. A.; Rueda-Delgado, D.; Schwenzer, J. A.; Gharibzadeh, S.; Abzieher, T.; Khan, M. R.; Haghighirad, A. A. et al. Spontaneous enhancement of the stable power conversion efficiency in perovskite solar cells. J. Mater. Chem. A 2020, 8, 670–682.

    Article  CAS  Google Scholar 

  24. Kim, H.; Lee, S. U.; Lee, D. Y.; Paik, M. J.; Na, H.; Lee, J.; Seok, S. I. Optimal interfacial engineering with different length of alkylammonium halide for efficient and stable perovskite solar cells. Adv. Energy Mater. 2019, 9, 1902740.

    Article  CAS  Google Scholar 

  25. Ji, C.; Liang, C. J.; Song, Q.; Gong, H. K.; Liu, N.; You, F. T.; Li, D.; He, Z. Q. Interface engineering of 2D/3D perovskite heterojunction improves photovoltaic efficiency and stability. Solar RRL 2021, 5, 2100072.

    Article  CAS  Google Scholar 

  26. Zhou, N.; Shen, Y. H.; Li, L.; Tan, S. Q.; Liu, N.; Zheng, G. H. J.; Chen, Q.; Zhou, H. P. Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. J. Am. Chem. Soc. 2018, 140, 459–465.

    Article  CAS  Google Scholar 

  27. Sutanto, A. A.; Drigo, N.; Queloz, V. I. E.; Garcia-Benito, I.; Kirmani, A. R.; Richter, L. J.; Schouwink, P. A.; Cho, K. T.; Paek, S.; Nazeeruddin, M. K. et al. Dynamical evolution of the 2D/3D interface: A hidden driver behind perovskite solar cell instability. J. Mater. Chem. A 2020, 8, 2343–2348.

    Article  CAS  Google Scholar 

  28. Sutanto, A. A.; Szostak, R.; Drigo, N.; Queloz, V. I. E.; Marchezi, P. E.; Germino, J. C.; Tolentino, H. C. N.; Nazeeruddin, M. K.; Nogueira, A. F.; Grancini, G. In situ analysis reveals the role of 2D perovskite in preventing thermal-induced degradation in 2D/3D perovskite interfaces. Nano Lett. 2020, 20, 3992–3998.

    Article  CAS  Google Scholar 

  29. Yu, J. C.; Badgujar, S.; Jung, E. D.; Singh, V. K.; Kim, D. W.; Gierschner, J.; Lee, E.; Kim, Y. S.; Cho, S.; Kwon, M. S. et al. Highly efficient and stable inverted perovskite solar cell obtained via treatment by semiconducting chemical additive. Adv. Mater. 2019, 31, 1805554.

    Google Scholar 

  30. Zou, H. Y.; Guo, D. P.; He, B. W.; Yu, J. G.; Fan, K. Enhanced photocurrent density of HTM-free perovskite solar cells by carbon quantum dots. Appl. Surf. Sci. 2018, 430, 625–631.

    Article  CAS  Google Scholar 

  31. Chen, R. S.; Feng, Y. L.; Jing, L.; Wang, M. H.; Ma, H. R.; Bian, J. M.; Shi, Y. T. Low-temperature sprayed carbon electrode in modular HTL-free perovskite solar cells: A comparative study on the choice of carbon sources. J. Mater. Chem. C 2021, 9, 3546–3554.

    Article  CAS  Google Scholar 

  32. Li, G. D.; Song, J.; Wang, D.; Sun, W. H.; Wu, J. H.; Lan, Z. Undoped 2, 2′, 7, 7′-tetrakis (N, N-p-dimethoxy-phenylamino)-9, 9′-spirobifluorene and PbS binary hole-transporter for efficient and stable planar perovskite solar cells. J. Power Sources 2021, 481, 229149.

    Article  CAS  Google Scholar 

  33. Tress, W.; Marinova, N.; Inganäs, O.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Graetzel, M. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: The role of radiative and non-radiative recombination. Adv. Energy Mater. 2015, 5, 1400812.

    Article  Google Scholar 

  34. Zhou, Q. W.; Duan, J. L.; Du, J.; Guo, Q. Y.; Zhang, Q. Y.; Yang, X. Y.; Duan, Y. Y.; Tang, Q. W. Tailored lattice “tape” to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr3 perovskite solar cell with an ultrahigh voltage of 1. 702 V. Adv. Sci. 2021, 8, 2101418.

    Article  CAS  Google Scholar 

  35. Yang, J. M.; Xiong, S. B.; Song, J. N.; Wu, H. B.; Zeng, Y. H.; Lu, L. Y.; Shen, K. C.; Hao, T. Y.; Ma, Z. F.; Liu, F. et al. Energetics and energy loss in 2D ruddlesden-popper perovskite solar cells. Adv. Energy Mater. 2020, 10, 2000687.

    Article  CAS  Google Scholar 

  36. Yuan, L. G.; Luo, H. M.; Wang, J. R.; Xu, Z. H.; Li, J.; Jiang, Q. S.; Yan, K. Y. Quantifying the energy loss for a perovskite solar cell passivated with acetamidine halide. J. Mater. Chem. A 2021, 9, 4781–4788.

    Article  CAS  Google Scholar 

  37. Jang, Y. W.; Lee, S.; Yeom, K. M.; Jeong, K.; Choi, K.; Choi, M.; Noh, J. H. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 2021, 6, 63–71.

    Article  CAS  Google Scholar 

  38. Bisquert, J.; Bertoluzzi, L.; Mora-Sero, I.; Garcia-Belmonte, G. Theory of impedance and capacitance spectroscopy of solar cells with dielectric relaxation, drift-diffusion transport, and recombination. J. Phys. Chem. C 2014, 118, 18983–18991.

    Article  CAS  Google Scholar 

  39. Pascoe, A. R.; Duffy, N. W.; Scully, A. D.; Huang, F. Z.; Cheng, Y. B. Insights into planar CH3NH3PbI3 perovskite solar cells using impedance spectroscopy. J. Phys. Chem. C 2015, 119, 4444–4453.

    Article  CAS  Google Scholar 

  40. Cohen, B. E.; Wierzbowska, M.; Etgar, L. High efficiency and high open circuit voltage in quasi 2D perovskite based solar cells. Adv. Funct. Mater. 2017, 27, 1604733.

    Article  Google Scholar 

  41. Li, M. K.; Chen, T. P.; Lin, Y. F.; Raghavan, C. M.; Chen, W. L.; Yang, S. H.; Sankar, R.; Luo, C. W.; Chang, Y. M.; Chen, C. W. Intrinsic carrier transport of phase-pure homologous 2D organolead halide hybrid perovskite single crystals. Small 2018, 14, 1803763.

    Article  Google Scholar 

  42. Hou, W. J.; Han, G. Y.; Ou, T.; Xiao, Y. M.; Chen, Q. An efficient and stable perovskite solar cell with suppressed defects by employing dithizone as a lead indicator. Angew. Chem., Int. Ed. 2020, 59, 21409–21413.

    Article  CAS  Google Scholar 

  43. Li, X. Q.; Li, W. H.; Yang, Y. J.; Lai, X.; Su, Q.; Wu, D.; Li, G. Q.; Wang, K.; Chen, S. M.; Sun, X. W. et al. Defects passivation with dithienobenzodithiophene-based π-conjugated polymer for enhanced performance of perovskite solar cells. Solar RRL 2019, 3, 1900029.

    Article  CAS  Google Scholar 

  44. Jiang, M. C.; Yuan, J. F.; Cao, G. Z.; Tian, J. J. In-situ fabrication of P3HT passivating layer with hole extraction ability for enhanced performance of perovskite solar cell. Chem. Eng. J. 2020, 402, 126152.

    Article  CAS  Google Scholar 

  45. Song, S.; Yang, S. J.; Choi, J.; Han, S. G.; Park, K.; Lee, H.; Min, J.; Ryu, S.; Cho, K. Surface stabilization of a formamidinium perovskite solar cell using quaternary ammonium salt. ACS Appl. Mater. Interfaces 2021, 13, 37052–37062.

    Article  CAS  Google Scholar 

  46. Wang, H. L.; Song, J.; Li, Z. K.; Li, L. D.; Li, J. H.; Li, X. B.; Qu, J. L.; Wong, W. Y. A linear conjugated tetramer as a surface-modification layer to increase perovskite solar cell performance and stability. J. Mater. Chem. A 2020, 8, 11728–11733.

    Article  CAS  Google Scholar 

  47. Li, C.; Tscheuschner, S.; Paulus, F.; Hopkinson, P. E.; Kießling, J.; Köhler, A.; Vaynzof, Y.; Huettner, S. Iodine migration and its effect on hysteresis in perovskite solar cells. Adv. Mater. 2016, 28, 2446–2454.

    Article  CAS  Google Scholar 

  48. Guerrero, A.; Bou, A.; Matt, G.; Almora, O.; Heumüller, T.; Garcia-Belmonte, G.; Bisquert, J.; Hou, Y.; Brabec, C. Switching off hysteresis in perovskite solar cells by fine-tuning energy levels of extraction layers. Adv. Energy Mater. 2018, 8, 1703376.

    Article  Google Scholar 

  49. Xia, J. M.; Liang, C.; Mei, S. L.; Gu, H.; He, B. C.; Zhang, Z. P.; Liu, T. H.; Wang, K. Y.; Wang, S. S.; Chen, S. et al. Deep surface passivation for efficient and hydrophobic perovskite solar cells. J. Mater. Chem. A 2021, 9, 2919–2927.

    Article  CAS  Google Scholar 

  50. Wu, G. B.; Liang, R.; Zhang, Z. P.; Ge, M. Z.; Xing, G. C.; Sun, G. X. 2D hybrid halide perovskites: Structure, properties, and applications in solar cells. Small 2021, 17, 2103514.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M. Z. acknowledges the Sichuan Science and Technology Program (No. 2022YFH0080). This work was also supported by scientific research starting project of SWPU (Nos. 2021QHZ005 and 2021QHZ021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoran Sun, Yuelong Huang or Meng Zhang.

Electronic Supplementary Material

12274_2022_4774_MOESM1_ESM.pdf

Spontaneous relaxation of 2D passivation layer contributes to the aging-induced performance enhancement of perovskite solar cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Liu, C., Sun, X. et al. Spontaneous relaxation of 2D passivation layer contributes to the aging-induced performance enhancement of perovskite solar cells. Nano Res. 16, 521–527 (2023). https://doi.org/10.1007/s12274-022-4774-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4774-8

Keywords

Navigation