Skip to main content
Log in

Locked nucleic acids based DNA circuits with ultra-low leakage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

DNA circuits based on toehold-mediated DNA strand displacement reaction are powerful tools owing to their programmability and predictability. However, performance and practical application of the circuits are greatly restricted by leakage, which refers to the fact that there is no input (invading strand) in the circuit, and the output signal is still generated. Herein, we constructed locked nucleic acids-based DNA circuits with ultra-low leakage. High binding affinity of LNA (locked nucleic acid)-DNA/LNA suppressed the leakage by inhibiting the breathing effect. Based on the strategy, we have built various low-leakage DNA circuits, including translator circuit, catalytic hairpin assembly (CHA) circuit, entropy-driven circuit (EDC), and seesaw circuit. More importantly, our strategy would not affect the desired main reactions: The output signal remained above 85% for all tested circuits, and the signal-to-noise ratios were elevated to 148.8-fold at the most. We believe our strategy will greatly promote the development and application of DNA circuits-based DNA nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, B. Y.; Thachuk, C.; Ellington, A. D.; Winfree, E.; Soloveichik, D. Effective design principles for leakless strand displacement systems. Proc. Natl. Acad. Sci. USA 2018, 115, E12182–E12191.

    Article  CAS  Google Scholar 

  2. Hu, Y.; Niemeyer, C. M. From DNA nanotechnology to material systems engineering. Adv. Mater. 2019, 31, 1806294.

    Article  Google Scholar 

  3. Madsen, M.; Gothelf, K. V. Chemistries for DNA nanotechnology. Chem. Rev. 2019, 119, 6384–6458.

    Article  CAS  Google Scholar 

  4. Seelig, G.; Soloveichik, D.; Zhang, D. Y.; Winfree, E. Enzyme-free nucleic acid logic circuits. Science 2006, 314, 1585–1588.

    Article  CAS  Google Scholar 

  5. Woods, D.; Doty, D.; Myhrvold, C.; Hui, J.; Zhou, F.; Yin, P.; Winfree, E. Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. Nature 2019, 567, 366–372.

    Article  CAS  Google Scholar 

  6. Liu, L. Q.; Hu, Q. Y.; Zhang, W. K.; Li, W. H.; Zhang, W.; Ming, Z. H.; Li, L. J.; Chen, N.; Wang, H. B.; Xiao, X. J. Multifunctional clip strand for the regulation of DNA strand displacement and construction of complex DNA Nanodevices. ACS Nano 2021, 15, 11573–11584.

    Article  CAS  Google Scholar 

  7. Zhu, D.; Lu, B.; Zhu, Y.; Ma, Z. H.; Wei, Y. Q.; Su, S.; Wang, L. H.; Song, S. P.; Zhu, Y.; Wang, L. H. et al. Cancer-specific microRNA analysis with a nonenzymatic nucleic acid circuit. ACS Appl. Mater. Interfaces 2019, 11, 11220–11226.

    Article  CAS  Google Scholar 

  8. Kim, K. T.; Angerani, S.; Chang, D. L.; Winssinger, N. Coupling of DNA circuit and templated reactions for quadratic amplification and release of functional molecules. J. Am. Chem. Soc. 2019, 141, 16288–16295.

    Article  CAS  Google Scholar 

  9. Cherry, K. M.; Qian, L. L. Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks. Nature 2018, 559, 370–376.

    Article  CAS  Google Scholar 

  10. Wang, H. H.; Peng, P.; Wang, Q. W.; Du, Y.; Tian, Z. J.; Li, T. Environment-recognizing DNA-computation circuits for the intracellular transport of molecular payloads for mRNA imaging. Angew. Chem., Int. Ed. 2020, 59, 6099–6107.

    Article  CAS  Google Scholar 

  11. Bai, H. J.; Yan, Y. R.; Li, D. D.; Fan, N. K.; Cheng, W. Q.; Yang, W.; Ju, H. X.; Li, X. M.; Ding, S. J. Dispersion-to-localization of catalytic hairpin assembly for sensitive sensing and imaging microRNAs in living cells from whole blood. Biosens. Bioelectron. 2022, 198, 113821.

    Article  CAS  Google Scholar 

  12. Chen, Y. J.; Groves, B.; Muscat, R. A.; Seelig, G. DNA nanotechnology from the test tube to the cell. Nat. Nanotechnol. 2015, 10, 748–760.

    Article  CAS  Google Scholar 

  13. Ouyang, C. H.; Zhang, S. B.; Xue, C.; Yu, X.; Xu, H.; Wang, Z. M.; Lu, Y.; Wu, Z. S. Precision-guided missile-like DNA nanostructure containing warhead and guidance control for aptamer-based targeted drug delivery into cancer cells in vitro and in vivo. J. Am. Chem. Soc. 2020, 142, 1265–1277.

    Article  CAS  Google Scholar 

  14. Chen, X.; Briggs, N.; McLain, J. R.; Ellington, A. D. Stacking nonenzymatic circuits for high signal gain. Proc. Natl. Acad. Sci. USA 2013, 110, 5386–5391.

    Article  CAS  Google Scholar 

  15. Zimmers, Z. A.; Adams, N. M.; Haselton, F. R. Addition of mirror-image L-DNA elements to DNA amplification circuits to distinguish leakage from target signal. Biosens. Bioelectron. 2021, 188, 113354.

    Article  CAS  Google Scholar 

  16. Qian, L. L.; Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 2011, 332, 1196–1201.

    Article  CAS  Google Scholar 

  17. Jiang, Y. S.; Bhadra, S.; Li, B. L.; Ellington, A. D. Mismatches improve the performance of strand-displacement nucleic acid circuits. Angew. Chem., Int. Ed. 2014, 53, 1845–1848.

    Article  CAS  Google Scholar 

  18. Song, T. Q.; Gopalkrishnan, N.; Eshra, A.; Garg, S.; Mokhtar, R.; Bui, H.; Chandran, H.; Reif, J. Improving the performance of DNA strand displacement circuits by shadow cancellation. ACS Nano 2018, 12, 11689–11697.

    Article  CAS  Google Scholar 

  19. Koshkin, A. A.; Singh, S. K.; Nielsen, P.; Rajwanshi, V. K.; Kumar, R.; Meldgaard, M.; Olsen, C. E.; Wengel, J. LNA (locked nucleic acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 1998, 54, 3607–3630.

    Article  CAS  Google Scholar 

  20. Arora, A.; Kaur, H.; Wengel, J.; Maiti, S. Effect of locked nucleic acid (LNA) modification on hybridization kinetics of DNA duplex. Nucleic Acids Symp. Ser. 2008, 52, 417–418.

    Article  CAS  Google Scholar 

  21. Campbell, M. A.; Wengel, J. Locked vs. unlocked nucleic acids (LNA vs. UNA):Contrasting structures work towards common therapeutic goals. Chem. Soc. Rev. 2011, 40, 5680–5689.

    Article  CAS  Google Scholar 

  22. Dai, W. H.; Zhang, J.; Meng, X. D.; He, J.; Zhang, K.; Cao, Y.; Wang, D. D.; Dong, H. F.; Zhang, X. J. Catalytic hairpin assembly gel assay for multiple and sensitive microRNA detection. Theranostics 2018, 8, 2646–2656.

    Article  CAS  Google Scholar 

  23. Liu, J. M.; Zhang, Y.; Xie, H. B.; Zhao, L.; Zheng, L.; Ye, H. M. Applications of catalytic hairpin assembly reaction in biosensing. Small 2019, 15, 1902989.

    Article  CAS  Google Scholar 

  24. Lee, C. Y.; Jang, H.; Park, K. S.; Park, H. G. A label-free and enzyme-free signal amplification strategy for a sensitive RNase H activity assay. Nanoscale 2017, 9, 16149–16153.

    Article  CAS  Google Scholar 

  25. Xing, C.; Chen, Z. Y.; Zhang, C.; Wang, J.; Lu, C. H. Target-directed enzyme-free dual-amplification DNA circuit for rapid signal amplification. J. Mater. Chem. B 2020, 8, 10770–10775.

    Article  CAS  Google Scholar 

  26. Yang, J.; Wu, R. F.; Li, Y. F.; Wang, Z. Y.; Pan, L. Q.; Zhang, Q.; Lu, Z. H.; Zhang, C. Entropy-driven DNA logic circuits regulated by DNAzyme. Nucleic Acids Res. 2018, 46, 8532–8541.

    Article  CAS  Google Scholar 

  27. Zhang, C.; Wang, Z. Y.; Liu, Y.; Yang, J.; Zhang, X. X.; Li, Y. F.; Pan, L. Q.; Ke, Y. G.; Yan, H. Nicking-assisted reactant recycle to implement entropy-driven DNA circuit. J. Am. Chem. Soc. 2019, 141, 17189–17197.

    Article  CAS  Google Scholar 

  28. He, L.; Lu, D. Q.; Liang, H.; Xie, S. T.; Zhang, X. B.; Liu, Q. L.; Yuan, Q.; Tan, W. H. mRNA-initiated, three-dimensional DNA amplifier able to function inside living cells. J. Am. Chem. Soc. 2018, 140, 258–263.

    Article  CAS  Google Scholar 

  29. Bai, M.; Chen, F.; Cao, X. W.; Zhao, Y.; Xue, J.; Yu, X.; Fan, C. H.; Zhao, Y. X. Intracellular entropy-driven multi-bit DNA computing for tumor progression discrimination. Angew. Chem., Int. Ed. 2020, 59, 13267–13272.

    Article  CAS  Google Scholar 

  30. Olson, X.; Kotani, S.; Padilla, J. E.; Hallstrom, N.; Goltry, S.; Lee, J.; Yurke, B.; Hughes, W. L.; Graugnard, E. Availability: A metric for nucleic acid strand displacement systems. ACS Synth. Biol. 2017, 6, 84–93.

    Article  CAS  Google Scholar 

  31. Lysne, D.; Jones, K.; Stosius, A.; Hachigian, T.; Lee, J.; Graugnard, E. Availability-driven design of hairpin fuels and small interfering strands for leakage reduction in autocatalytic networks. J. Phys. Chem. B 2020, 124, 3326–3335.

    Article  CAS  Google Scholar 

  32. Zhang, D. Y.; Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 2009, 131, 17303–17314.

    Article  CAS  Google Scholar 

  33. Qian, L. L.; Winfree, E.; Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 2011, 475, 368–372.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2021YFC2701402), the National Natural Science Foundation of China (No. 81871732), the Open Research Fund of State Key Laboratory of Bioelectronics, South-east University (No. Sklb2021-k06), the Open Project Fund from NHC Key Lab of Reproduction Regulation (No. KF2021-02), and the Open Research Fund of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology, No. 2022-KF-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianjin Xiao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Liu, L., Zhang, L. et al. Locked nucleic acids based DNA circuits with ultra-low leakage. Nano Res. 16, 865–872 (2023). https://doi.org/10.1007/s12274-022-4761-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4761-0

Keywords

Navigation