Skip to main content
Log in

Fabricating ion-conducting channel in SU-8 matrix for high-performance patternable polymer electrolytes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Advances in electrochemical energy storage technologies drive the need for battery safety performance and miniaturization, which calls for the easily processable polymer electrolytes suitable for on-chip microbattery technology. However, the low ionic conductivity of polymer electrolytes and poor-patternable capabilities hinder their application in microdevices. Herein, we modified SU-8, as the matrix material, by poly(ethylene oxide) (PEO) with lithium salts to obtain a patternable lithium-ion polymer electrolyte. Due to the highly amorphous state and more Li-ion transport pathways through blending effect and the increase in number of epoxides, the ionic conductivity of achieved sample is increased by an order of magnitude to 2.9 × 10−4 S·cm−1 in comparison with the SU-8 sample at 50 °C. The modified SU-8 exhibits good thermal stability (> 150 °C), mechanical properties (elastic modulus of 1.52 GPa), as well as an electrochemical window of 4.3 V. Half-cell and microdevice were fabricated and tested to verify the possibility of the micro-sized on-chip battery. All of these results demonstrate a promising strategy for the integration of on-chip batteries with microelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  CAS  Google Scholar 

  2. Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

    Article  CAS  Google Scholar 

  3. Yu, K. S.; Pan, X. L.; Zhang, G. B.; Liao, X. B.; Zhou, X. B.; Yan, M. Y.; Xu, L.; Mai, L. Q. Nanowires in energy storage devices: Structures, synthesis, and applications. Adv. Energy Mater. 2018, 8, 1802369.

    Article  Google Scholar 

  4. Lin, X. D.; Yu, J.; Effat, M. B.; Zhou, G. D.; Robson, M. J.; Kwok, S. C. T.; Li, H. J.; Zhan, S. Y.; Shang, Y. L.; Ciucci, F. Ultrathin and non-flammable dual-salt polymer electrolyte for high-energy-density lithium-metal battery. Adv. Funct. Mater. 2021, 31, 2010261.

    Article  CAS  Google Scholar 

  5. Xu, L.; Tang, S.; Cheng, Y.; Wang, K. Y.; Liang, J. Y.; Liu, C.; Cao, Y. C.; Wei, F.; Mai, L. Q. Interfaces in solid-state lithium batteries. Joule 2018, 2, 1991–2015.

    Article  CAS  Google Scholar 

  6. Fan, L.; Wei, S. Y.; Li, S. Y.; Li, Q.; Lu, Y. Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 2018, 8, 1702657.

    Article  Google Scholar 

  7. Thangadurai, V.; Narayanan, S.; Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review. Chem. Soc. Rev. 2014, 43, 4714–4727.

    Article  CAS  Google Scholar 

  8. Zheng, H. P.; Wu, S. P.; Tian, R.; Xu, Z. M.; Zhu, H.; Duan, H. N.; Liu, H. Z. Intrinsic lithiophilicity of Li-garnet electrolytes enabling high-rate lithium cycling. Adv. Funct. Mater. 2020, 30, 1906189.

    Article  CAS  Google Scholar 

  9. Xia, Y. Y.; Xu, N.; Du, L. L.; Cheng, Y.; Lei, S. L.; Li, S. J.; Liao, X. B.; Shi, W. C.; Xu, L.; Mai, L. Q. Rational design of ion transport paths at the interface of metal-organic framework modified solid electrolyte. ACS Appl. Mater. Interfaces 2020, 12, 22930–22938.

    Article  CAS  Google Scholar 

  10. Dong, D. R.; Zhou, B.; Sun, Y. F.; Zhang, H.; Zhong, G. M.; Dong, Q. Y.; Fu, F.; Qian, H.; Lin, Z. Y.; Lu, D. R. et al. Polymer electrolyte glue: A universal interfacial modification strategy for all-solid-state Li batteries. Nano Lett. 2019, 19, 2343–2349.

    Article  CAS  Google Scholar 

  11. Xia, S. L.; Ni, J. F.; Savilov, S. V.; Li, L. Oxygen-deficient Ta2O5 nanoporous films as self-supported electrodes for lithium microbatteries. Nano Energy 2018, 45, 407–412.

    Article  CAS  Google Scholar 

  12. Pan, X. L.; Hong, X. F.; Xu, L.; Li, Y. X.; Yan, M. Y.; Mai, L. Q. On-chip micro/nano devices for energy conversion and storage. Nano Today 2019, 28, 100764.

    Article  Google Scholar 

  13. Fan, X. Y.; Liu, X. R.; Hu, W. B.; Zhong, C.; Lu, J. Advances in the development of power supplies for the internet of everything. InfoMat 2019, 1, 130–139.

    Article  Google Scholar 

  14. Rolison, D. R.; Nazar, L. F. Electrochemical energy storage to power the 21st century. MRS Bull. 2011, 36, 486–493.

    Article  CAS  Google Scholar 

  15. Choi, C.; Robert, K.; Whang, G.; Roussel, P.; Lethien, C.; Dunn, B. Photopatternable hydroxide ion electrolyte for solid-state microsupercapacitors. Joule 2021, 5, 2466–2478.

    Article  CAS  Google Scholar 

  16. El-Kady, M. F.; Kaner, R. B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475.

    Article  Google Scholar 

  17. Wu, Z. S.; Feng, X. L.; Cheng, H. M. Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. Natl. Sci. Rev. 2014, 1, 277–292.

    Article  CAS  Google Scholar 

  18. Zhang, F.; Wei, M.; Viswanathan, V. V.; Swart, B.; Shao, Y. Y.; Wu, G.; Zhou, C. 3D printing technologies for electrochemical energy storage. Nano Energy 2017, 40, 418–431.

    Article  CAS  Google Scholar 

  19. Zhu, C.; Liu, T. Y.; Qian, F.; Chen, W.; Chandrasekaran, S.; Yao, B.; Song, Y.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M. et al. 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 2017, 15, 107–120.

    Article  CAS  Google Scholar 

  20. Kim, S. H.; Choi, K. H.; Cho, S. J.; Choi, S.; Park, S.; Lee, S. Y. Printable solid-state lithium-ion batteries: A new route toward shape-conformable power sources with aesthetic versatility for flexible electronics. Nano Lett. 2015, 15, 5168–5177.

    Article  CAS  Google Scholar 

  21. Mai, L. Q.; Dong, Y. J.; Xu, L.; Han, C. H. Single nanowire electrochemical devices. Nano Lett. 2010, 10, 4273–4278.

    Article  CAS  Google Scholar 

  22. Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.

    Article  CAS  Google Scholar 

  23. Xu, X.; Yan, M. Y.; Tian, X. C.; Yang, C. C.; Shi, M. Z.; Wei, Q. L.; Xu, L.; Mai, L. Q. In situ investigation of Li and Na ion transport with single nanowire electrochemical devices. Nano Lett. 2015, 15, 3879–3884.

    Article  CAS  Google Scholar 

  24. Zhang, P. P.; Zhu, F.; Wang, F. X.; Wang, J. H.; Dong, R. H.; Zhuang, X. D.; Schmidt, O. G.; Feng, X. L. Stimulus-responsive micro-supercapacitors with ultrahigh energy density and reversible electrochromic window. Adv. Mater. 2017, 29, 1604491.

    Article  Google Scholar 

  25. Choi, C. S.; Lau, J.; Hur, J.; Smith, L.; Wang, C. L.; Dunn, B. Synthesis and properties of a photopatternable lithium-ion conducting solid electrolyte. Adv. Mater. 2018, 30, 1703772.

    Article  Google Scholar 

  26. Xue, Z. G.; He, D.; Xie, X. L. Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218–19253.

    Article  CAS  Google Scholar 

  27. Zhang, Y. H.; Lu, W.; Cong, L. N.; Liu, J.; Sun, L. Q.; Mauger, A.; Julien, C. M.; Xie, H. M.; Liu, J. Cross-linking network based on poly (ethylene oxide): Solid polymer electrolyte for room temperature lithium battery. J. Power Sources 2019, 420, 63–72.

    Article  CAS  Google Scholar 

  28. Das, D.; Chandrasekaran, A.; Venkatram, S.; Ramprasad, R. Effect of crystallinity on Li adsorption in polyethylene oxide. Chem. Mater. 2018, 30, 8804–8810.

    Article  CAS  Google Scholar 

  29. Wong, D. H. C.; Vitale, A.; Devaux, D.; Taylor, A.; Pandya, A. A.; Hallinan, D. T.; Thelen, J. L.; Mecham, S. J.; Lux, S. F.; Lapides, A. M. et al. Phase behavior and electrochemical characterization of blends of perfluoropolyether, poly (ethylene glycol), and a lithium salt. Chem. Mater. 2015, 27, 597–603.

    Article  CAS  Google Scholar 

  30. Rajendran, S.; Mahendran, O.; Kannan, R. Characterisation of [(1−x) PMMA−xPVDF] polymer blend electrolyte with Li+ ion. Fuel 2002, 81, 1077–1081.

    Article  CAS  Google Scholar 

  31. Reddy, M. J.; Chu, P. P.; Kumar, J. S.; Rao, U. V. S. Inhibited crystallization and its effect on conductivity in a nano-sized fe oxide composite peo solid electrolyte. J. Power Sources 2006, 161, 535–540.

    Article  CAS  Google Scholar 

  32. Yang, X. F.; Jiang, M.; Gao, X. J.; Bao, D. N.; Sun, Q.; Holmes, N.; Duan, H.; Mukherjee, S.; Adair, K.; Zhao, C. T. et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: Main chain or terminal-OH group? Energy Environ. Sci. 2020, 13, 1318–1325.

    Article  CAS  Google Scholar 

  33. Appetecchi, G. B.; Hassoun, J.; Scrosati, B.; Croce, F.; Cassel, F.; Salomon, M. Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes: II. All solid-state Li/LiFePO4 polymer batteries. J. Power Sources 2003, 124, 246–253.

    Article  CAS  Google Scholar 

  34. Yu, S.; Schmidt, R. D.; Garcia-Mendez, R.; Herbert, E.; Dudney, N. J.; Wolfenstine, J. B.; Sakamoto, J.; Siegel, D. J. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 2016, 28, 197–206.

    Article  CAS  Google Scholar 

  35. Zhang, J. J.; Zhao, J. H.; Yue, L. P.; Wang, Q. F.; Chai, J. C.; Liu, Z. H.; Zhou, X. H.; Li, H.; Guo, Y. G.; Cui, G. L. et al. Safety-reinforced poly (propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv. Energy Mater. 2015, 5, 1501082.

    Article  Google Scholar 

  36. Fu, C. Y.; Venturi, V.; Kim, J.; Ahmad, Z.; Ells, A. W.; Viswanathan, V.; Helms, B. A. Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. Nat. Mater. 2020, 19, 758–766.

    Article  CAS  Google Scholar 

  37. Lin, D. C.; Yuen, P. Y.; Liu, Y. Y.; Liu, W.; Liu, N.; Dauskardt, R. H.; Cui, Y. A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater. 2018, 30, 1802661.

    Article  Google Scholar 

  38. Liang, W. F.; Shao, Y. F.; Chen, Y. M.; Zhu, Y. A 4 V cathode compatible, superionic conductive solid polymer electrolyte for solid lithium metal batteries with long cycle life. ACS Appl. Energy Mater. 2018, 1, 6064–6071.

    Article  Google Scholar 

  39. Wang, C.; Wang, T.; Wang, L. L.; Hu, Z. L.; Cui, Z. L.; Li, J. D.; Dong, S. M.; Zhou, X. H.; Cui, G. L. Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery. Adv. Sci. 2019, 6, 1901036.

    Article  CAS  Google Scholar 

  40. Liu, Y. L.; Zhao, Y.; Lu, W.; Sun, L. Q.; Lin, L.; Zheng, M.; Sun, X. L.; Xie, H. M. PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries. Nano Energy 2021, 88, 106205.

    Article  CAS  Google Scholar 

  41. Pollak, E.; Salitra, G.; Baranchugov, V.; Aurbach, D. In situ conductivity, impedance spectroscopy, and ex situ Raman spectra of amorphous silicon during the insertion/extraction of lithium. J. Phys. Chem. C 2007, 111, 11437–11444.

    Article  CAS  Google Scholar 

  42. Ma, T. Y.; Xu, H. Y.; Yu, X. N.; Li, H. Y.; Zhang, W. G.; Cheng, X. L.; Zhu, W. T.; Qiu, X. P. Lithiation behavior of coaxial hollow nanocables of carbon-silicon composite. ACS Nano 2019, 13, 2274–2280.

    CAS  Google Scholar 

  43. Son, Y.; Sung, J.; Son, Y.; Cho, J. Recent progress of analysis techniques for silicon-based anode of lithium-ion batteries. Curr. Opin. Electrochem. 2017, 6, 77–83.

    Article  CAS  Google Scholar 

  44. Li, J. Y.; Li, G.; Zhang, J.; Yin, Y. X.; Yue, F. S.; Xu, Q.; Guo, Y. G. Rational design of robust Si/C microspheres for high-tap-density anode materials. ACS Appl. Mater. Interfaces 2019, 11, 4057–4064.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2020YFA0715000), the National Natural Science Foundation of China (Nos. 51802239, 51832004), Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (Nos. XHT2020-005, XHT2020-003), and the Innovation and Entrepreneurship Training Program of School of Materials Science and Engineering, Wuhan University of Technology (No. CY202031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Xu or Liqiang Mai.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Pan, X., Yang, Z. et al. Fabricating ion-conducting channel in SU-8 matrix for high-performance patternable polymer electrolytes. Nano Res. 16, 496–502 (2023). https://doi.org/10.1007/s12274-022-4751-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4751-2

Keywords

Navigation