Skip to main content
Log in

Recent advances in nature-inspired nanocatalytic reduction of organic molecules with water

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nature has provided us the assurance and inspiration for thousands of years in synthesizing value-added chemicals, with the assistance of reactive hydrogen species, and water as the ultimate hydrogen source. However, the natural photosynthesis is inefficient due to some intrinsic properties, urging people not only to learn from but also surpass during nature imitation. In this review, we summarized recent progresses on reactive hydrogen species-assisted nanocatalytic reduction of organic molecules towards value-added fine chemicals and pharmaceuticals, with water as the hydrogen source, and especially highlighted how photocatalytically or electrocatalytically evolved reactive hydrogen species synergize with biocatalytic centers and nanocatalytic sites for reduction of organic molecules. The design principles of collaborative semi-artificial systems and nanocatalytic artificial systems, the structure tuning of catalysts for the evolution and utilization of hydrogen species, and the determination of reactive hydrogen species for mechanistic insights were discussed in detail. Finally, perspectives were provided for further advancing this emerging area of nanocatalytic reduction of organic molecules from water (or proton) and organics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cestellos-Blanco, S.; Zhang, H.; Kim, J. M.; Shen, Y. X.; Yang, P. D. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nat. Catal. 2020, 3, 245–255.

    Article  CAS  Google Scholar 

  2. Hambourger, M.; Moore, G. F.; Kramer, D. M.; Gust, D.; Moore, A. L.; Moore, T. A. Biology and technology for photochemical fuel production. Chem. Soc. Rev. 2009, 38, 25–35.

    Article  CAS  Google Scholar 

  3. Dashty, M. A quick look at biochemistry: Carbohydrate metabolism. Clin. Biochem. 2013, 46, 1339–1352.

    Article  CAS  Google Scholar 

  4. Fang, X.; Kalathil, S.; Reisner, E. Semi-biological approaches to solar-to-chemical conversion. Chem. Soc. Rev. 2020, 49, 4926–4952.

    Article  CAS  Google Scholar 

  5. Yu, T.; Zhou, Y. J.; Huang, M. T.; Liu, Q. L.; Pereira, R.; David, F.; Nielsen, J. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell 2018, 174, 1549–1558.e14.

    Article  CAS  Google Scholar 

  6. Tarantino, K. T.; Liu, P.; Knowles, R. R. Catalytic ketyl-olefin cyclizations enabled by proton-coupled electron transfer. J. Am. Chem. Soc. 2013, 135, 10022–10025.

    Article  CAS  Google Scholar 

  7. Murray, P. R.; Cox, J. H.; Chiappini, N. D.; Roos, C. B.; McLoughlin, E. A.; Hejna, B. G.; Nguyen, S. T.; Ripberger, H. H.; Ganley, J. M.; Tsui, E. et al. Photochemical and electrochemical applications of proton-coupled electron transfer in organic synthesis. Chem. Rev. 2022, 122, 2017–2291.

    Article  CAS  Google Scholar 

  8. Kornienko, N.; Zhang, J. Z.; Sakimoto, K. K.; Yang, P. D.; Reisner, E. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 2018, 13, 890–899.

    Article  CAS  Google Scholar 

  9. Brown, K. A.; Wilker, M. B.; Boehm, M.; Hamby, H.; Dukovic, G.; King, P. W. Photocatalytic regeneration of nicotinamide cofactors by quantum dot-enzyme biohybrid complexes. ACS Catal. 2016, 6, 2201–2204.

    Article  CAS  Google Scholar 

  10. Liu, W. G.; Hu, W. J.; Yang, L. J.; Liu, J. Single cobalt atom anchored on carbon nitride with well-defined active sites for photoenzyme catalysis. Nano Energy 2020, 73, 104750.

    Article  CAS  Google Scholar 

  11. Zhang, S. H.; Zhang, Y. S.; Chen, Y.; Yang, D.; Li, S. H.; Wu, Y. Z.; Sun, Y. Y.; Cheng, Y. Q.; Shi, J. F.; Jiang, Z. Y. Metal hydride-embedded titania coating to coordinate electron transfer and enzyme protection in photo-enzymatic catalysis. ACS Catal. 2020, 11, 476–483.

    Article  Google Scholar 

  12. Zhang, Y. Y.; Zhao, Y. J.; Li, R.; Liu, J. Bioinspired NADH regeneration based on conjugated photocatalytic systems. Sol. RRL 2021, 5, 2000339.

    Article  CAS  Google Scholar 

  13. Liu, J.; Antonietti, M. Bio-inspired NADH regeneration by carbon nitride photocatalysis using diatom templates. Energ. Environ. Sci. 2013, 6, 1486–1493.

    Article  CAS  Google Scholar 

  14. Kuk, S. K.; Singh, R. K.; Nam, D. H.; Singh, R.; Lee, J. K.; Park, C. B. Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade. Angew. Chem., Int. Ed. 2017, 56, 3827–3832.

    Article  CAS  Google Scholar 

  15. Sakimoto, K. K.; Wong, A. B.; Yang, P. D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 2016, 351, 74–77.

    Article  CAS  Google Scholar 

  16. Guo, J. L.; Suástegui, M.; Sakimoto, K. K.; Moody, V. M.; Xiao, G.; Nocera, D. G.; Joshi, N. S. Light-driven fine chemical production in yeast biohybrids. Science 2018, 362, 813–816.

    Article  CAS  Google Scholar 

  17. Wang, B.; Jiang, Z. F.; Yu, J. C.; Wang, J. F.; Wong, P. K. Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system. Nanoscale 2019, 11, 9296–9301.

    Article  CAS  Google Scholar 

  18. Liu, C.; Gallagher, J. J.; Sakimoto, K. K.; Nichols, E. M.; Chang, C. J.; Chang, M. C. Y.; Yang, P. D. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 2015, 15, 3634–3639.

    Article  CAS  Google Scholar 

  19. Nichols, E. M.; Gallagher, J. J.; Liu, C.; Su, Y. D.; Resasco, J.; Yu, Y.; Sun, Y. J.; Yang, P. D.; Chang, M. C. Y.; Chang, C. J. Hybrid bioinorganic approach to solar-to-chemical conversion. Proc. Natl. Acad. Sci. USA 2015, 112, 11461–11466.

    Article  CAS  Google Scholar 

  20. Fu, Q.; Xiao, S.; Li, Z.; Li, Y. B.; Kobayashi, H.; Li, J.; Yang, Y.; Liao, Q.; Zhu, X.; He, X. F. et al. Hybrid solar-to-methane conversion system with a Faradaic efficiency of up to 96%. Nano Energy 2018, 53, 232–239.

    Article  CAS  Google Scholar 

  21. Xiao, S.; Li, Z.; Fu, Q.; Li, Y. B.; Li, J.; Zhang, L.; Liao, Q.; Zhu, X. Hybrid microbial photoelectrochemical system reduces CO2 to CH4 with 1.28% solar energy conversion efficiency. Chem. Eng. J. 2020, 390, 124530.

    Article  CAS  Google Scholar 

  22. Su, Y. D.; Cestellos-Blanco, S.; Kim, J. M.; Shen, Y. X.; Kong, Q.; Lu, D.; Liu, C.; Zhang, H.; Cao, Y. H.; Yang, P. D. Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation. Joule 2020, 4, 800–811.

    Article  CAS  Google Scholar 

  23. Cai, Z. H.; Huang, L. P.; Quan, X.; Zhao, Z. B.; Shi, Y.; Li Puma, G. Acetate production from inorganic carbon (HCO3) in photoassisted biocathode microbial electrosynthesis systems using WO3/MoO3/g-C3N4 heterojunctions and Serratia marcescens species. Appl. Catal. B Environ. 2020, 267, 118611.

    Article  CAS  Google Scholar 

  24. Harnisch, F.; Holtmann, D. Bioelectrosynthesis: Advances in Biochemical Engineering/Biotechnology; Springer: Cham, 2019.

    Book  Google Scholar 

  25. Wienkamp, R.; Steckhan, E. Indirect electrochemical regeneration of NADH by a bipyridinerhodium(I) complex as electron-transfer agent. Angew. Chem., Int. Ed. 1982, 21, 782–783.

    Article  Google Scholar 

  26. Baik, S. H.; Kang, C.; Jeon, I. I.; Yun, S. E. Direct electrochemical regeneration of NADH from NAD+ using cholesterol-modified gold amalgam electrode. Biotechnol. Technol. 1999, 13, 1–5.

    Article  CAS  Google Scholar 

  27. Kim, Y. H.; Yoo, Y. J. Regeneration of the nicotinamide cofactor using a mediator-free electrochemical method with a tin oxide electrode. Enzyme Microb. Technol. 2009, 44, 129–134.

    Article  CAS  Google Scholar 

  28. Cai, R.; Milton, R. D.; Abdellaoui, S.; Park, T.; Patel, J.; Alkotaini, B.; Minteer, S. D. electroenzymatic C—C bond formation from CO2. J. Am. Chem. Soc. 2018, 140, 5041–5044.

    Article  CAS  Google Scholar 

  29. Yuan, M. W.; Kummer, M. J.; Milton, R. D.; Quah, T.; Minteer, S. D. Efficient NADH regeneration by a redox polymer-immobilized enzymatic system. ACS Catal. 2019, 9, 5486–5495.

    Article  CAS  Google Scholar 

  30. Dong, F. Y.; Chen, H.; Malapit, C. A.; Prater, M. B.; Li, M.; Yuan, M. W.; Lim, K.; Minteer, S. D. Biphasic bioelectrocatalytic synthesis of chiral β-hydroxy nitriles. J. Am. Chem. Soc. 2020, 142, 8374–8382.

    Article  CAS  Google Scholar 

  31. Hongo, M.; Iwahara, M. Application of electro-energizing method to L-glutamic acid fermentation. J. Agric. Food Chem. 1979, 43, 2075–2081.

    CAS  Google Scholar 

  32. Nevin, K. P.; Woodard, T. L.; Franks, A. E.; Summers, Z. M.; Lovley, D. R. Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 2010, 1, e00103–10.

    Article  Google Scholar 

  33. Rabaey, K.; Rozendal, R. A. Microbial electrosynthesis—Revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 2010, 8, 706–716.

    Article  CAS  Google Scholar 

  34. Torella, J. P.; Gagliardi, C. J.; Chen, J. S.; Bediako, D. K.; Colón, B.; Way, J. C.; Silver, P. A.; Nocera, D. G. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc. Natl. Acad. Sci. USA 2015, 112, 2337–2342.

    Article  CAS  Google Scholar 

  35. Li, H.; Opgenorth, P. H.; Wernick, D. G.; Rogers, S.; Wu, T. Y.; Higashide, W.; Malati, P.; Huo, Y. X.; Cho, K. M.; Liao, J. C. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 2012, 335, 1596–1596.

    Article  CAS  Google Scholar 

  36. Zhou, M.; Chen, J. W.; Freguia, S.; Rabaey, K.; Keller, J. Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol. Environ. Sci. Technol. 2013, 47, 11199–11205.

    Article  CAS  Google Scholar 

  37. Liu, C.; Colón, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 2016, 352, 1210–1213.

    Article  CAS  Google Scholar 

  38. Rodrigues, R. M.; Guan, X.; Iñiguez, J. A.; Estabrook, D. A.; Chapman, J. O.; Huang, S. Y.; Sletten, E. M.; Liu, C. Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction. Nat. Catal. 2019, 2, 407–414.

    Article  CAS  Google Scholar 

  39. Das, S.; Pérez-Ramírez, J.; Gong, J. L.; Dewangan, N.; Hidajat, K.; Gates, B. C.; Kawi, S. Core—shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 2020, 49, 2937–3004.

    Article  CAS  Google Scholar 

  40. Liang, J. L.; Jiang, Z. F.; Wong, P. K.; Lee, C. S. Recent progress on carbon nitride and its hybrid photocatalysts for CO2 reduction. Sol. RRL 2020, 5, 2000478.

    Article  Google Scholar 

  41. Wagner, A.; Sahm, C. D.; Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 2020, 3, 775–786.

    Article  CAS  Google Scholar 

  42. Ou, W.; Qiu, C. T.; Su, C. L. Photo- and electro-catalytic deuteration of feedstock chemicals and pharmaceuticals: A review. Chin. J. Catal. 2022, 43, 956–970.

    Article  CAS  Google Scholar 

  43. Tao, X. P.; Zhao, Y.; Wang, S. Y.; Li, C.; Li, R. G. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem. Soc. Rev. 2022, 51, 3561–3608.

    Article  CAS  Google Scholar 

  44. Meng, A. Y.; Teng, Z. Y.; Zhang, Q. T.; Su, C. L. Intrinsic defects in polymeric carbon nitride for photocatalysis applications. Chem. Asian J. 2020, 15, 3405–3415.

    Article  CAS  Google Scholar 

  45. Ou, W.; Xu, Y. S.; Zhou, H. W.; Su, C. L. Harnessing photoexcited redox centers of semiconductor photocatalysts for advanced synthetic chemistry. Sol. RRL 2021, 5, 2000444.

    Article  CAS  Google Scholar 

  46. Teng, Z. Y.; Zhang, Q. T.; Yang, H. B.; Kato, K.; Yang, W. J.; Lu, Y. R.; Liu, S. X.; Wang, C. Y.; Yamakata, A.; Su, C. L. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384.

    Article  CAS  Google Scholar 

  47. Huang, H. N.; Shi, R.; Li, Z. H.; Zhao, J. Q.; Su, C. L.; Zhang, T. R. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas—water boundary. Angew. Chem., Int. Ed. 2022, 61, e202200802.

    CAS  Google Scholar 

  48. Zubair, M.; Vanhaecke, E. M. M.; Svenum, I. H.; Rønning, M.; Yang, J. Core—shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation. Green Energy Environ. 2020, 5, 461–472.

    Article  Google Scholar 

  49. Meng, A. Y.; Cheng, B.; Tan, H. Y.; Fan, J. J.; Su, C. L.; Yu, J. G. TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity. Appl. Catal. B Environ. 2021, 289, 120039.

    Article  CAS  Google Scholar 

  50. Liu, Y.; Guo, J. G.; Wang, Y.; Hao, Y. J.; Liu, R. H.; Li, F. T. One-step synthesis of defected Bi2Al4O9/β-Bi2O3 heterojunctions for photocatalytic reduction of CO2 to CO. Green Energy Environ. 2021, 6, 244–252.

    Article  CAS  Google Scholar 

  51. Yu, L. M.; Mo, Z.; Zhu, X. L.; Deng, J. J.; Xu, F.; Song, Y. H.; She, Y. B.; Li, H. M.; Xu, H. Construction of 2D/2D Z-scheme MnO2−x/g-C3N4 photocatalyst for efficient nitrogen fixation to ammonia. Green Energy Environ. 2021, 6, 538–545.

    Article  Google Scholar 

  52. Zhang, P.; Wang, T.; Gong, J. L. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 2015, 27, 5328–5342.

    Article  CAS  Google Scholar 

  53. Kumar, A.; Krishnan, V. Vacancy engineering in semiconductor photocatalysts: Implications in hydrogen evolution and nitrogen fixation applications. Adv. Funct. Mater. 2021, 31, 2009807.

    Article  CAS  Google Scholar 

  54. Marschall, R. Semiconductor Composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 2014, 24, 2421–2440.

    Article  CAS  Google Scholar 

  55. Fajrina, N.; Tahir, M. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int. J. Hydrog. Energy 2019, 44, 540–577.

    Article  CAS  Google Scholar 

  56. Sun, H. L.; Ma, Y. F.; Zhang, Q. T.; Su, C. L. Engineering the local coordination environment of single-atom catalysts and their applications in photocatalytic water splitting: A review. Trans. Tianjin Univ. 2021, 24, 313–330.

    Article  Google Scholar 

  57. Sun, H. L.; Wei, K.; Wu, D.; Jiang, Z. F.; Zhao, H.; Wang, T. Q.; Zhang, Q.; Wong, P. K. Structure defects promoted exciton dissociation and carrier separation for enhancing photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 264, 118480.

    Article  Google Scholar 

  58. Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015, 8, 731–759.

    Article  CAS  Google Scholar 

  59. Xu, Y. S.; Fan, M. J.; Yang, W. J.; Xiao, Y. H.; Zeng, L. T.; Wu, X.; Xu, Q. H.; Su, C. L.; He, Q. J. Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon nitride capable of near-infrared photocatalytic H2 production. Adv. Mater. 2021, 33, 2101455.

    Article  CAS  Google Scholar 

  60. Li, Q. F.; Ren, C.; Qiu, C. T.; He, T. C.; Zhang, Q. T.; Ling, X.; Xu, Y. S.; Su, C. L. Promoting near-infrared photocatalytic activity of carbon-doped carbon nitride via solid alkali activation. Chin. Chem. Lett. 2021, 32, 3463–3468.

    Article  CAS  Google Scholar 

  61. Li, J. Y.; Li, Y. H.; Qi, M. Y.; Lin, Q.; Tang, Z. R.; Xu, Y. J. Selective organic transformations over cadmium sulfide-based photocatalysts. ACS Catal. 2020, 10, 6262–6280.

    Article  CAS  Google Scholar 

  62. Qi, M. Y.; Li, Y. H.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Efficient photoredox-mediated C—C coupling organic synthesis and hydrogen production over engineered semiconductor quantum dots. ACS Catal. 2020, 10, 14327–14335.

    Article  CAS  Google Scholar 

  63. Han, C.; Li, Y. H.; Li, J. Y.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Cooperative syngas production and C—N bond formation in one photoredox cycle. Angew. Chem., Int. Ed. 2021, 133, 8041–8049.

    Article  Google Scholar 

  64. Qi, M. Y.; Conte, M.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 2021, 121, 13051–13085.

    Article  CAS  Google Scholar 

  65. Li, Y. H.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Coupling organic synthesis and hydrogen evolution over composite WO3/ZnIn2S4 Z-scheme photocatalyst. J. Phys. Chem. C 2022, 126, 1872–1880.

    Article  CAS  Google Scholar 

  66. Huang, X. B.; Li, X. J.; Luan, Q. J.; Zhang, K. Y.; Wu, Z. Y.; Li, B. Z.; Xi, Z. S.; Dong, W. J.; Wang, G. Highly dispersed Pt clusters encapsulated in MIL-125-NH2 via in situ auto-reduction method for photocatalytic H2 production under visible light. Nano Res. 2021, 14, 4250–4257.

    Article  CAS  Google Scholar 

  67. Feng, B. B.; Guo, R.; Cai, Q. L.; Song, Y. P.; Li, N.; Fu, Y. H.; Chen, D. L.; Zhang, J. W.; Zhu, W. D.; Zhang, F. M. Construction of isolated Ni sites on nitrogen-doped hollow carbon spheres with Ni—N3 configuration for enhanced reduction of nitroarenes. Nano Res. 2022, 15, 6001–6009.

    Article  CAS  Google Scholar 

  68. Zhang, R. X.; Chen, Y.; Ding, M. H.; Zhao, J. Heterogeneous Cu catalyst in organic transformations. Nano Res. 2022, 15, 2810–2833.

    Article  Google Scholar 

  69. Zhang, M.; Chang, J. N.; Chen, Y. F.; Lu, M.; Yu, T. Y.; Jiang, C.; Li, S. L.; Cai, Y. P.; Lan, Y. Q. Controllable synthesis of COFs-based multicomponent nanocomposites from core—shell to yolk—shell and hollow-sphere structure for artificial photosynthesis. Adv. Mater. 2021, 33, 2105002.

    Article  CAS  Google Scholar 

  70. Sun, L. S.; Lu, M.; Yang, Z. F.; Yu, Z. Y.; Su, X.; Lan, Y. Q.; Chen, L. Nickel glyoximate based metal-covalent organic frameworks for efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202204326.

  71. Lu, M.; Zhang, M.; Liu, J.; Yu, T. Y.; Chang, J. N.; Shang, L. J.; Li, S. L.; Lan, Y. Q. Confining and highly dispersing single polyoxometalate clusters in covalent organic frameworks by covalent linkages for CO2 photoreduction. J. Am. Chem. Soc. 2022, 144, 1861–1871.

    Article  CAS  Google Scholar 

  72. Zhang, M.; Chen, Y. F.; Chang, J. N.; Jiang, C.; Ji, W. X.; Li, L. Y.; Lu, M.; Dong, L. Z.; Li, S. L.; Cai, Y. P. et al. Efficient charge migration in chemically-bonded Prussian blue analogue/CdS with beaded structure for photocatalytic H2 evolution. JACS Au 2021, 1, 212–220.

    Article  CAS  Google Scholar 

  73. Xia, Y. S.; Tang, M. Z.; Zhang, L.; Liu, J.; Jiang, C.; Gao, G. K.; Dong, L. Z.; Xie, L. G.; Lan, Y. Q. Tandem utilization of CO2 photoreduction products for the carbonylation of aryl iodides. Nat. Commun. 2022, 13, 2964.

    Article  CAS  Google Scholar 

  74. Liu, C. B.; Chen, Z. X.; Su, C. L.; Zhao, X. X.; Gao, Q.; Ning, G. H.; Zhu, H.; Tang, W.; Leng, K.; Fu, W. et al. Controllable deuteration of halogenated compounds by photocatalytic D2O splitting. Nat. Commun. 2018, 9, 80.

    Article  Google Scholar 

  75. Yu, Y. F.; Zhang, B. Photocatalytic deuteration of halides using D2O over CdSe porous nanosheets: A mild and controllable route to deuterated molecules. Angew. Chem., Int. Ed. 2018, 57, 5590–5592.

    Article  CAS  Google Scholar 

  76. Han, C.; Han, G. Q.; Yao, S. K.; Yuan, L.; Liu, X. W.; Cao, Z.; Mannodi-Kanakkithodi, A.; Sun, Y. J. Defective ultrathin ZnIn2S4 for photoreductive deuteration of carbonyls using D2O as the deuterium source. Adv. Sci. 2021, 9, e2103408.

    Article  Google Scholar 

  77. Kandi, D.; Martha, S.; Parida, K. M. Quantum dots as enhancer in photocatalytic hydrogen evolution: A review. Int. J. Hydrog. Energy 2017, 42, 9467–9481.

    Article  CAS  Google Scholar 

  78. Holmes, M. A.; Townsend, T. K.; Osterloh, F. E. Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chem. Commun. 2012, 48, 371–373.

    Article  CAS  Google Scholar 

  79. Nan, X. L.; Wang, Y.; Li, X. B.; Tung, C. H.; Wu, L. Z. Site-selective D2O-mediated deuteration of diaryl alcohols via quantum dots photocatalysis. Chem. Commun. 2021, 57, 6768–6771.

    Article  CAS  Google Scholar 

  80. Zhang, D. S.; Ren, P. J.; Liu, W. W.; Li, Y. R.; Salli, S.; Han, F. Y.; Qiao, W.; Liu, Y.; Fan, Y. Z.; Cui, Y. et al. Photocatalytic abstraction of hydrogen atoms from water using hydroxylated graphitic carbon nitride for hydrogenative coupling reactions. Angew. Chem., Int. Ed. 2022, 61, e202204256.

    CAS  Google Scholar 

  81. Xu, F. Y.; Meng, K.; Cao, S.; Jiang, C. H.; Chen, T.; Xu, J. S.; Yu, J. G. Step-by-step mechanism insights into the TiO2/Ce2S3 S-scheme photocatalyst for enhanced aniline production with water as a proton source. ACS Catal. 2022, 12, 164–172.

    Article  CAS  Google Scholar 

  82. Yi, S. S.; Zhang, X. B.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Nonnoble metals applied to solar water splitting. Energy Environ. Sci. 2018, 11, 3128–3156.

    Article  CAS  Google Scholar 

  83. Xu, Y. S.; Qiu, C. T.; Fan, X.; Xiao, Y. H.; Zhang, G. Q.; Yu, K. Y.; Ju, H. X.; Ling, X.; Zhu, Y. F.; Su, C. L. K+-induced crystallization of polymeric carbon nitride to boost its photocatalytic activity for H2 evolution and hydrogenation of alkenes. Appl. Catal. B: Environ. 2020, 268, 118457.

    Article  CAS  Google Scholar 

  84. Qiu, C. T.; Xu, Y. S.; Fan, X.; Xu, D.; Tandiana, R.; Ling, X.; Jiang, Y. N.; Liu, C. B.; Yu, L.; Chen, W. et al. Highly crystalline K-intercalated polymeric carbon nitride for visible-light photocatalytic alkenes and alkynes deuterations. Adv. Sci. 2019, 6, 1801403.

    Article  Google Scholar 

  85. Ling, X.; Xu, Y. S.; Wu, S. P.; Liu, M. F.; Yang, P.; Qiu, C. T.; Zhang, G. Q.; Zhou, H. W.; Su, C. L. A visible-light-photocatalytic water-splitting strategy for sustainable hydrogenation/deuteration of aryl chlorides. Sci. China Chem. 2020, 63, 386–392.

    Article  CAS  Google Scholar 

  86. Zhang, Z. F.; Qiu, C. T.; Xu, Y. S.; Han, Q.; Tang, J. W.; Loh, K. P.; Su, C. L. Semiconductor photocatalysis to engineering deuterated N-alkyl pharmaceuticals enabled by synergistic activation of water and alkanols. Nat. Commun. 2020, 11, 4722.

    Article  CAS  Google Scholar 

  87. Xu, Y. S.; Zhang, Z. F.; Qiu, C. T.; Chen, S. Q.; Ling, X.; Su, C. L. Photocatalytic water-splitting coupled with alkanol oxidation for selective N-alkylation reactions over carbon nitride. ChemSusChem 2021, 14, 582–589.

    Article  CAS  Google Scholar 

  88. Qiu, C. T.; Sun, Y. Y.; Xu, Y. S.; Zhang, B.; Zhang, X.; Yu, L.; Su, C. L. Photoredox-catalyzed simultaneous olefin hydrogenation and alcohol oxidation over crystalline porous polymeric carbon nitride. ChemSusChem 2021, 14, 3344–3350.

    Article  CAS  Google Scholar 

  89. Dong, Y. Y.; Su, Y. L.; Du, L. L.; Wang, R. F.; Zhang, L.; Zhao, D. B.; Xie, W. Plasmon-enhanced deuteration under visible-light irradiation. ACS Nano 2019, 13, 10754–10760.

    Article  CAS  Google Scholar 

  90. Xiao, J. D.; Han, L. L.; Luo, J.; Yu, S. H.; Jiang, H. L. Integration of plasmonic effects and Schottky junctions into metal-organic framework composites: Steering charge flow for enhanced visible-light photocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1103–1107.

    Article  CAS  Google Scholar 

  91. Bauer, N. A.; Hoque, E.; Wolf, M.; Kleigrewe, K.; Hofmann, T. Detection of the formyl radical by EPR spin-trapping and mass spectrometry. Free Radic. Biol. Med. 2018, 116, 129–133.

    Article  CAS  Google Scholar 

  92. Makino, K.; Mossoba, M. M.; Riesz, P. Chemical effects of ultrasound on aqueous solutions. Evidence for hydroxyl and hydrogen free radicals (.cntdot.OH and.cntdot.H) by spin trapping. J. Am. Chem. Soc. 1982, 104, 3537–3539.

    Article  CAS  Google Scholar 

  93. Wang, Y. F.; Xu, Y. M.; Dong, S. S.; Wang, P.; Chen, W.; Lu, Z. D.; Ye, D. J.; Pan, B. C.; Wu, D.; Vecitis, C. D. et al. Ultrasonic activation of inert poly(tetrafluoroethylene) enables piezocatalytic generation of reactive oxygen species. Nat. Commun. 2021, 12, 3508.

    Article  CAS  Google Scholar 

  94. Chen, J. X.; Ma, Q.; Li, M. H.; Chao, D. Y.; Huang, L.; Wu, W. W.; Fang, Y. X.; Dong, S. J. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat. Commun. 2021, 12, 3375.

    Article  CAS  Google Scholar 

  95. Yao, Q. F.; Chen, J. B.; Xiao, S. Z.; Zhang, Y. L.; Zhou, X. F. Selective electrocatalytic reduction of nitrate to ammonia with nickel phosphide. ACS Appl. Mater. Interfaces 2021, 13, 30458–30467.

    Article  CAS  Google Scholar 

  96. Zheng, W. T.; You, S. J.; Yao, Y.; Jin, L. M.; Liu, Y. B. Development of atomic hydrogen-mediated electrocatalytic filtration system for peroxymonosulfate activation towards ultrafast degradation of emerging organic contaminants. Appl. Catal. B: Environ. 2021, 298, 120593.

    Article  CAS  Google Scholar 

  97. Feng, T.; Wang, J.; Wang, Y.; Yu, C. F.; Zhou, X.; Xu, B. C.; László, K.; Li, F. T.; Zhang, W. X. Selective electrocatalytic reduction of nitrate to dinitrogen by Cu2O nanowires with mixed oxidation-state. Chem. Eng. J. 2022, 433, 133495.

    Article  CAS  Google Scholar 

  98. Zeng, H. B.; Zhang, G.; Ji, Q. H.; Liu, H. J.; Hua, X. L.; Xia, H.; Sillanpää, M.; Qu, J. H. pH-independent production of hydroxyl radical from atomic H*-mediated electrocatalytic H2O2 reduction:A green Fenton process without byproducts. Environ. Sci. Technol. 2020, 54, 14725–14731.

    Article  CAS  Google Scholar 

  99. Liu, C. B.; Han, S. Y.; Li, M. Y.; Chong, X. D.; Zhang, B. Electrocatalytic deuteration of halides with D2O as the deuterium source over a copper nanowire arrays cathode. Angew. Chem., Int. Ed. 2020, 59, 18527–18531.

    Article  CAS  Google Scholar 

  100. Lu, L. J.; Li, H.; Zheng, Y. F.; Bu, F. X.; Lei, A. W. Facile and economical electrochemical dehalogenative deuteration of (hetero)aryl halides. CCS Chem. 2021, 3, 2669–2675.

    Article  CAS  Google Scholar 

  101. Han, S. H.; Shi, Y. M.; Wang, C. H.; Liu, C. B.; Zhang, B. Hollow cobalt sulfide nanocapsules for electrocatalytic selective transfer hydrogenation of cinnamaldehyde with water. Cell Rep. Phys. Sci. 2021, 2, 100337.

    Article  CAS  Google Scholar 

  102. Li, M. Y.; Liu, C. B.; Huang, Y.; Han, S. Y.; Zhang, B. Water-involving transfer hydrogenation and dehydrogenation of N-heterocycles over a bifunctional MoNi4 electrode. Chinese J. Catal. 2021, 42, 1983–1991.

    Article  CAS  Google Scholar 

  103. Liu, T.; Luo, J. M.; Meng, X. Y.; Yang, L. M.; Liang, B.; Liu, M. J.; Liu, C. B.; Wang, A. J.; Liu, X.; Pei, Y. et al. Electrocatalytic dechlorination of halogenated antibiotics via synergistic effect of chlorine—cobalt bond and atomic H. J. Hazard. Mater. 2018, 358, 294–301.

    Article  CAS  Google Scholar 

  104. Liu, H. L.; Han, J. L.; Yuan, J. L.; Liu, C. B.; Wang, D.; Liu, T.; Liu, M. J.; Luo, J. M.; Wang, A. J.; Crittenden, J. C. Deep dehalogenation of florfenicol using crystalline CoP nanosheet arrays on a Ti plate via direct cathodic reduction and atomic H. Environ. Sci. Technol. 2019, 53, 11932–11940.

    Article  CAS  Google Scholar 

  105. Singh, N.; Sanyal, U.; Fulton, J. L.; Gutiérrez, O. Y.; Lercher, J. A.; Campbell, C. T. Quantifying adsorption of organic molecules on platinum in aqueous phase by hydrogen site blocking and in situ X-ray absorption spectroscopy. ACS Catal. 2019, 9, 6869–6881.

    Article  CAS  Google Scholar 

  106. Jerkiewicz, G. Electrochemical hydrogen adsorption and absorption. Part 1: Under-potential deposition of hydrogen. Electrocatalysis 2010, 1, 179–199.

    Article  CAS  Google Scholar 

  107. Zalineeva, A.; Baranton, S.; Coutanceau, C.; Jerkiewicz, G. Electrochemical behavior of unsupported shaped palladium nanoparticles. Langmuir 2015, 31, 1605–1609.

    Article  CAS  Google Scholar 

  108. Zalineeva, A.; Baranton, S.; Coutanceau, C.; Jerkiewicz, G. Octahedral palladium nanoparticles as excellent hosts for electrochemically adsorbed and absorbed hydrogen. Sci. Adv. 2017, 3, e1600542.

    Article  Google Scholar 

  109. Gabrielli, C.; Grand, P. P.; Lasia, A.; Perrot, H. Investigation of hydrogen adsorption and absorption in palladium thin films. J. Electrochem. Soc. 2004, 151, A1937.

    Article  CAS  Google Scholar 

  110. Singh, R. K.; Ramesh, R.; Devivaraprasad, R.; Chakraborty, A.; Neergat, M. Hydrogen interaction (electrosorption and evolution) characteristics of Pd and Pd3Co alloy nanoparticles: An in-situ investigation with electrochemical impedance spectroscopy. Electrochim. Acta 2016, 194, 199–210.

    Article  CAS  Google Scholar 

  111. Van Der Niet, M. J. T. C.; Garcia-Araez, N.; Hernández, J.; Feliu, J. M.; Koper, M. T. M. Water dissociation on well-defined platinum surfaces: The electrochemical perspective. Catal. Today 2013, 202, 105–113.

    Article  CAS  Google Scholar 

  112. Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.

    Article  CAS  Google Scholar 

  113. Sheng, W. C.; Zhuang, Z. B.; Gao, M. R.; Zheng, J.; Chen, J. G.; Yan, Y. S. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 2015, 6, 5848.

    Article  CAS  Google Scholar 

  114. Wu, Y. M.; Liu, C. B.; Wang, C. H.; Lu, S. Y.; Zhang, B. Selective transfer semihydrogenation of alkynes with H2O (D2O) as the H (D) source over a Pd-P cathode. Angew. Chem., Int. Ed. 2020, 59, 21170–21175.

    Article  CAS  Google Scholar 

  115. Zhou, L.; Zhu, X. R.; Su, H.; Lin, H. Z.; Lyu, Y.; Zhao, X.; Chen, C.; Zhang, N. N.; Xie, C.; Li, Y. Y. et al. Identification of the hydrogen utilization pathway for the electrocatalytic hydrogenation of phenol. Sci. China Chem. 2021, 64, 1586–1595.

    Article  CAS  Google Scholar 

  116. Jiang, G. M.; Lan, M. N.; Zhang, Z. Y.; Lv, X. S.; Lou, Z. M.; Xu, X. H.; Dong, F.; Zhang, S. Identification of active hydrogen species on palladium nanoparticles for an enhanced electrocatalytic hydrodechlorination of 2,4-dichlorophenol in water. Environ. Sci. Technol. 2017, 51, 7599–7605.

    Article  CAS  Google Scholar 

  117. Akhade, S. A.; Singh, N.; Gutiérrez, O. Y.; Lopez-Ruiz, J.; Wang, H. M.; Holladay, J. D.; Liu, Y.; Karkamkar, A.; Weber, R. S.; Padmaperuma, A. B. et al. Electrocatalytic hydrogenation of biomass-derived organics: A review. Chem. Rev. 2020, 120, 11370–11419.

    Article  CAS  Google Scholar 

  118. Skúlason, E.; Tripkovic, V.; Björketun, M. E.; Gudmundsdóttir, S.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nørskov, J. K. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 2010, 114, 18182–18197.

    Article  Google Scholar 

  119. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

    Article  CAS  Google Scholar 

  120. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  CAS  Google Scholar 

  121. Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Mater. 2017, 1, 0003.

    CAS  Google Scholar 

  122. Singh, N.; Song, Y.; Gutiérrez, O. Y.; Camaioni, D. M.; Campbell, C. T.; Lercher, J. A. Electrocatalytic hydrogenation of phenol over platinum and rhodium: Unexpected temperature effects resolved. ACS Catal. 2016, 6, 7466–7470.

    Article  CAS  Google Scholar 

  123. Kurimoto, A.; Sherbo, R. S.; Cao, Y.; Loo, N. W. X.; Berlinguette, C. P. Electrolytic deuteration of unsaturated bonds without using D2. Nat. Catal. 2020, 3, 719–726.

    Article  CAS  Google Scholar 

  124. Sherbo, R. S.; Kurimoto, A.; Brown, C. M.; Berlinguette, C. P. Efficient electrocatalytic hydrogenation with a palladium membrane reactor. J. Am. Chem. Soc. 2019, 141, 7815–7821.

    Article  CAS  Google Scholar 

  125. Sherbo, R. S.; Delima, R. S.; Chiykowski, V. A.; MacLeod, B. P.; Berlinguette, C. P. Complete electron economy by pairing electrolysis with hydrogenation. Nat. Catal. 2018, 1, 501–507.

    Article  CAS  Google Scholar 

  126. Zhang, B.; Qiu, C. T.; Wang, S.; Gao, H.; Yu, K. Y.; Zhang, Z. F.; Ling, X.; Ou, W.; Su, C. L. Electrocatalytic water-splitting for the controllable and sustainable synthesis of deuterated chemicals. Sci. Bull. 2021, 66, 562–569.

    Article  CAS  Google Scholar 

  127. Chadderdon, X. H.; Chadderdon, D. J.; Matthiesen, J. E.; Qiu, Y.; Carraher, J. M.; Tessonnier, J. P.; Li, W. Z. Mechanisms of furfural reduction on metal electrodes: Distinguishing pathways for selective hydrogenation of bioderived oxygenates. J. Am. Chem. Soc. 2017, 139, 14120–14128.

    Article  CAS  Google Scholar 

  128. Wu, Y. M.; Liu, C. B.; Wang, C. H.; Yu, Y. F.; Shi, Y. M.; Zhang, B. Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water. Nat. Commun. 2021, 12, 3881.

    Article  CAS  Google Scholar 

  129. Lopez-Ruiz, J. A.; Andrews, E.; Akhade, S. A.; Lee, M. S.; Koh, K.; Sanyal, U.; Yuk, S. F.; Karkamkar, A. J.; Derewinski, M. A.; Holladay, J. et al. Understanding the role of metal and molecular structure on the electrocatalytic hydrogenation of oxygenated organic compounds. ACS Catal. 2019, 9, 9964–9972.

    Article  CAS  Google Scholar 

  130. Lopez-Ruiz, J. A.; Sanyal, U.; Egbert, J.; Gutiérrez, O. Y.; Holladay, J. Kinetic investigation of the sustainable electrocatalytic hydrogenation of benzaldehyde on Pd/C: Effect of electrolyte composition and half-cell potentials. ACS Sustainable Chem. Eng. 2018, 6, 16073–16085.

    Article  CAS  Google Scholar 

  131. Singh, N.; Sanyal, U.; Ruehl, G.; Stoerzinger, K. A.; Gutiérrez, O. Y.; Camaioni, D. M.; Fulton, J. L.; Lercher, J. A.; Campbell, C. T. Aqueous phase catalytic and electrocatalytic hydrogenation of phenol and benzaldehyde over platinum group metals. J. Catal. 2020, 382, 372–384.

    Article  CAS  Google Scholar 

  132. Singh, N.; Nguyen, M. T.; Cantu, D. C.; Mehdi, B. L.; Browning, N. D.; Fulton, J. L.; Zheng, J.; Balasubramanian, M.; Gutiérrez, O. Y.; Glezakou, V. A. et al. Carbon-supported Pt during aqueous phenol hydrogenation with and without applied electrical potential: X-ray absorption and theoretical studies of structure and adsorbates. J. Catal. 2018, 368, 8–19.

    Article  CAS  Google Scholar 

  133. Bockris, J. O. M.; McBreen, J.; Nanis, L. The hydrogen evolution kinetics and hydrogen entry into α-Iron. J. Electrochem. Soc. 1965, 112, 1025.

    Article  CAS  Google Scholar 

  134. Gabrielli, C.; Grand, P. P.; Lasia, A.; Perrot, H. Investigation of hydrogen adsorption—absorption into thin palladium films. J. Electrochem. Soc. 2004, 151, A1925.

    Article  CAS  Google Scholar 

  135. Lin, B. Q.; Wu, X.; Xie, L.; Kang, Y. Q.; Du, H. D.; Kang, F. Y.; Li, J.; Gan, L. Atomic imaging of subsurface interstitial hydrogen and insights into surface reactivity of palladium hydrides. Angew. Chem., Int. Ed. 2020, 59, 20348–20352.

    Article  CAS  Google Scholar 

  136. Stacchiola, D.; Tysoe, W. T. The effect of subsurface hydrogen on the adsorption of ethylene on Pd (111). Surf. Sci. 2003, 540, L600–L604.

    Article  CAS  Google Scholar 

  137. Khan, N. A.; Shaikhutdinov, S.; Freund, H. J. Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catal. Lett. 2006, 108, 159–164.

    Article  CAS  Google Scholar 

  138. Teschner, D.; Borsodi, J.; Wootsch, A.; Révay, Z.; Havecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlogl, R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008, 320, 86–89.

    Article  CAS  Google Scholar 

  139. Teschner, D.; Borsodi, J.; Kis, Z.; Szentmiklósi, L.; Révay, Z.; Knop-Gericke, A.; Schlögl, R.; Torres, D.; Sautet, P. Role of hydrogen species in palladium-catalyzed alkyne hydrogenation. J. Phys. Chem. C 2010, 114, 2293–2299.

    Article  CAS  Google Scholar 

  140. Armbrüster, M.; Behrens, M.; Cinquini, F.; Föttinger, K.; Grin, Y.; Haghofer, A.; Klötzer, B.; Knop-Gericke, A.; Lorenz, H.; Ota, A. et al. How to control the selectivity of palladium-based catalysts in hydrogenation reactions: The role of subsurface chemistry. ChemCatChem 2012, 4, 1048–1063.

    Article  Google Scholar 

  141. Aleksandrov, H. A.; Kozlov, S. M.; Schauermann, S.; Vayssilov, G. N.; Neyman, K. M. How absorbed hydrogen affects the catalytic activity of transition metals. Angew. Chem., Int. Ed. 2014, 126, 13589–13593.

    Article  Google Scholar 

  142. Roylance, J. J.; Kim, T. W.; Choi, K. S. Efficient and selective electrochemical and photoelectrochemical reduction of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan using water as the hydrogen source. ACS Catal. 2016, 6, 1840–1847.

    Article  CAS  Google Scholar 

  143. Chong, X. D.; Liu, C. B.; Huang, Y.; Huang, C. Q.; Zhang, B. Potential-tuned selective electrosynthesis of azoxy-, azo- and amino-aromatics over a CoP nanosheet cathode. Natl. Sci. Rev. 2020, 7, 285–295.

    Article  CAS  Google Scholar 

  144. Zhang, P. L.; Sheng, X.; Chen, X. Y.; Fang, Z. Y.; Jiang, J.; Wang, M.; Li, F. S.; Fan, L. Z.; Ren, Y. S.; Zhang, B. B. et al. Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source. Angew. Chem., Int. Ed. 2019, 131, 9253–9257.

    Article  Google Scholar 

  145. Inami, Y.; Ogihara, H.; Nagamatsu, S.; Asakura, K.; Yamanaka, I. Synergy of Ru and Ir in the electrohydrogenation of toluene to methylcyclohexane on a ketjenblack-supported Ru-Ir alloy cathode. ACS Catal. 2019, 9, 2448–2457.

    Article  CAS  Google Scholar 

  146. Mitsushima, S.; Takakuwa, Y.; Nagasawa, K.; Sawaguchi, Y.; Kohno, Y.; Matsuzawa, K.; Awaludin, Z.; Kato, A.; Nishiki, Y. Membrane electrolysis of toluene hydrogenation with water decomposition for energy carrier synthesis. Electrocatalysis 2016, 7, 127–131.

    Article  CAS  Google Scholar 

  147. Higuchi, E.; Ueda, Y.; Chiku, M.; Inoue, H. Electrochemical hydrogenation reaction of toluene with PtxRu alloy catalyst-loaded gas diffusion electrodes. Electrocatalysis 2018, 9, 226–235.

    Article  CAS  Google Scholar 

  148. Inami, Y.; Ogihara, H.; Yamanaka, I. Selective electrohydrogenation of toluene to methylcyclohexane using carbon-supported non-platinum electrocatalysts in the hydrogen storage system. ChemistrySelect 2017, 2, 1939–1943.

    Article  CAS  Google Scholar 

  149. Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

    Article  CAS  Google Scholar 

  150. Shih, C. F.; Zhang, T.; Li, J. H.; Bai, C. L. Powering the future with liquid sunshine. Joule, 2018, 2, 1925–1949.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Natural Science Foundation of China (Nos. 22102102, 21805191 and 21972094), China Postdoctoral Science Foundation (No. 2021T140472), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515010982), Educational Commission of Guangdong Province (No. 839-0000013131), Shenzhen Stable Support Project (Nos. 20200812160737002 and 20200812122947002), Shenzhen Peacock Plan (Nos. KQTD2016053112042971, 20210308299C, 20180921273B, 20210802524B, and 827-000421), and Shenzhen Science and Technology Program (Nos. JCYJ20190808142001745 and RCJC20200714114434086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenliang Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Ou, W., Sun, L. et al. Recent advances in nature-inspired nanocatalytic reduction of organic molecules with water. Nano Res. 15, 10292–10315 (2022). https://doi.org/10.1007/s12274-022-4737-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4737-0

Keywords

Navigation