Skip to main content

Advertisement

Log in

Recent progress in single-molecule fluorescence technology in nanocatalysis

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) play a vital role in the energy catalysis process, so understanding the heterogeneous catalytic properties of nanocatalysts is of great significance for rationally guiding the design of catalysts. However, the traditional method obtains the average information based on the whole and cannot study the catalytic activity of a single nanoparticle. It is critical to investigate the catalytic activity of individual nanoparticles using in situ techniques. This review summarizes some of Prof. Xu’s recent accomplishments in studying the catalytic behavior of nanoparticles at the single-particle level using single-molecule fluorescence microscopy (SMFM). These achievements include revealing the effect of size, shape, and surface atoms of Pd nanoparticles on catalytic kinetics and dynamics as well as obtaining the activation energy of single Au nanoparticles for catalytic reactions by single-molecule methods. It is the first time to study the kinetics and dynamics of single-atom Pt catalysts. Furthermore, the method was extended to study the Pt deactivation process for hydrogen oxidation reactions as well as the catalytic kinetics of two-electron oxygen reduction reactions of individual Fe3O4 nanoparticles in electrocatalysis. Finally, single-molecule super-resolution techniques were used to observe the evolution of the activity of single Sb doped TiO2 nanorod domains. These studies are of guiding significance for in-depth understanding and realization of rational design of optimal catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, Z. M.; Liu, S. Q.; Tang, N. F.; Song, T.; Motokura, K.; Shen, Z. M.; Yang, Y. Coexistence of Fe nanoclusters boosting Fe single atoms to generate singlet oxygen for efficient aerobic oxidation of primary amines to imines. ACS Catal. 2022, 12, 5595–5604.

    Article  CAS  Google Scholar 

  2. Ryoo, R.; Kim, J.; Jo, C.; Han, S. W.; Kim, J. C.; Park, H.; Han, J.; Shin, H. S.; Shin, J. W. Rare-earth-platinum alloy nanoparticles in mesoporous zeolite for catalysis. Nature 2020, 585, 221–224.

    Article  CAS  Google Scholar 

  3. Yao, Y. G.; Dong, Q.; Brozena, A.; Luo, J.; Miao, J. W.; Chi, M. F.; Wang, C.; Kevrekidis, I. G.; Ren, Z. J.; Greeley, J. et al. High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery. Science 2022, 376, eabn3103.

    Article  CAS  Google Scholar 

  4. Liu, K. L.; Qin, R. X.; Zheng, N. F. Insights into the interfacial effects in heterogeneous metal nanocatalysts toward selective hydrogenation. J. Am. Chem. Soc. 2021, 143, 4483–4499.

    Article  CAS  Google Scholar 

  5. Song, Y.; Ozdemir, E.; Ramesh, S.; Adishev, A.; Subramanian, S.; Harale, A.; Albuali, M.; Fadhel, B. A.; Jamal, A.; Moon, D. et al. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO. Science 2020, 367, 777–781.

    Article  CAS  Google Scholar 

  6. Wang, H. W.; Gu, X. K.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Chen, S.; Cao, L. N.; Li, W. X.; Lu, J. L. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity. Sci. Adv. 2019, 5, eaat6413.

    Article  Google Scholar 

  7. Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288–4291.

    Article  CAS  Google Scholar 

  8. Laletina, S. S.; Mamatkulov, M.; Shor, E. A.; Kaichev, V. V.; Genest, A.; Yudanov, I. V.; Rösch, N. Size-dependence of the adsorption energy of CO on Pt nanoparticles: Tracing two intersecting trends by DFT calculations. J. Phys. Chem. C 2017, 121, 17371–17377.

    Article  CAS  Google Scholar 

  9. Li, J. B.; Qian, H. F.; Chen, H. L.; Zhao, Z.; Yuan, K. J.; Chen, G. X.; Miranda, A.; Guo, X. M.; Chen, Y. J.; Zheng, N. F. et al. Two distinctive energy migration pathways of monolayer molecules on metal nanoparticle surfaces. Nat. Commun. 2016, 7, 10749.

    Article  CAS  Google Scholar 

  10. Yudanov, I. V.; Genest, A.; Schauermann, S.; Freund, H. J.; Rösch, N. Size dependence of the adsorption energy of CO on metal nanoparticles: A DFT search for the minimum value. Nano Lett. 2012, 12, 2134–2139.

    Article  CAS  Google Scholar 

  11. Chen, T.; Tong, F. X.; Enderlein, J.; Zheng, Z. K. Plasmon-driven modulation of reaction pathways of individual Pt-modified Au nanorods. Nano Lett. 2020, 20, 3326–3330.

    Article  CAS  Google Scholar 

  12. Tong, F. X.; Liang, X. Z.; Ma, F. H.; Bao, X. L.; Wang, Z. Y.; Liu, Y. Y.; Wang, P.; Cheng, H. F.; Dai, Y.; Huang, B. B. et al. Plasmon-mediated nitrobenzene hydrogenation with formate as the hydrogen donor studied at a single-particle level. ACS Catal. 2021, 11, 3801–3809.

    Article  CAS  Google Scholar 

  13. Zheng, Z. K.; Tachikawa, T.; Majima, T. Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J. Am. Chem. Soc. 2014, 136, 6870–6873.

    Article  CAS  Google Scholar 

  14. Lin, M. H.; Zhou, Y. K.; Bu, L. Z.; Bai, C.; Tariq, M.; Wang, H. H.; Han, J. L.; Huang, X. Q.; Zhou, X. C. Single-nanoparticle coulometry method with high sensitivity and high throughput to study the electrochemical activity and oscillation of single nanocatalysts. Small 2021, 17, 2007302.

    Article  CAS  Google Scholar 

  15. Liu, S. C.; Ying, Y. L.; Long, Y. T. Rapid ultrasensitive monitoring the single-particle surface-enhanced Raman scattering (SERS) using a dark-field microspectroscopy assisted system. Chin. Chem. Lett. 2020, 31, 473–475.

    Article  CAS  Google Scholar 

  16. Chen, P.; Zhou, X. C.; Andoy, N. M.; Han, K. S.; Choudhary, E.; Zou, N. M.; Chen, G. Q.; Shen, H. Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. Chem. Soc. Rev. 2014, 43, 1107–1117.

    Article  CAS  Google Scholar 

  17. Janssen, K. P. F.; De Cremer, G.; Neely, R. K.; Kubarev, A. V.; Van Loon, J.; Martens, J. A.; De Vos, D. E.; Roeffaers, M. B. J.; Hofkens, J. Single molecule methods for the study of catalysis: From enzymes to heterogeneous catalysts. Chem. Soc. Rev. 2014, 43, 990–1006.

    Article  CAS  Google Scholar 

  18. Xu, W. L.; Shen, H.; Kim, Y. J.; Zhou, X. C.; Liu, G. K.; Park, J.; Chen, P. Single-molecule electrocatalysis by single-walled carbon nanotubes. Nano Lett. 2009, 9, 3968–3973.

    Article  CAS  Google Scholar 

  19. Zou, N. M.; Zhou, X. C.; Chen, G. Q.; Andoy, N. M.; Jung, W.; Liu, G. K.; Chen, P. Cooperative communication within and between single nanocatalysts. Nat. Chem. 2018, 10, 607–614.

    Article  CAS  Google Scholar 

  20. Lu, H. P.; Xun, L. Y.; Xie, X. S. Single-molecule enzymatic dynamics. Science 1998, 282, 1877–1882.

    Article  CAS  Google Scholar 

  21. Roeffaers, M. B. J.; Sels, B. F.; Uji-I, H.; De Schryver, F. C.; Jacobs, P. A.; De Vos, D. E.; Hofkens, J. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 2006, 439, 572–575.

    Article  CAS  Google Scholar 

  22. Xu, W. L.; Kong, J. S.; Yeh, Y. T. E.; Chen, P. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat. Mater. 2008, 7, 992–996.

    Article  CAS  Google Scholar 

  23. Tachikawa, T.; Yamashita, S.; Majima, T. Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J. Am. Chem. Soc. 2011, 133, 7197–7204.

    Article  CAS  Google Scholar 

  24. Chen, T.; Dong, B.; Chen, K. C.; Zhao, F.; Cheng, X. D.; Ma, C. B.; Lee, S.; Zhang, P.; Kang, S. H.; Ha, J. W. et al. Optical superresolution imaging of surface reactions. Chem. Rev. 2017, 117, 7510–7537.

    Article  CAS  Google Scholar 

  25. Dong, B.; Mansour, N.; Pei, Y. C.; Wang, Z. R.; Huang, T. X.; Filbrun, S. L.; Chen, M. D.; Cheng, X. D.; Pruski, M.; Huang, W. Y. et al. Single molecule investigation of nanoconfinement hydrophobicity in heterogeneous catalysis. J. Am. Chem. Soc. 2020, 142, 13305–13309.

    Article  CAS  Google Scholar 

  26. Dong, B.; Pei, Y.; Zhao, F.; Goh, T. W.; Qi, Z.; Xiao, C.; Chen, K.; Huang, W.; Fang, N. In situ quantitative single-molecule study of dynamic catalytic processes in nanoconfinement. Nat. Catal. 2018, 1, 135–140.

    Article  Google Scholar 

  27. Liu, X. D.; Chen, T.; Song, P.; Zhang, Y. W.; Xu, W. L. Single-molecule nanocatalysis of Pt nanoparticles. J. Phys. Chem. C 2018, 122, 1746–1752.

    Article  CAS  Google Scholar 

  28. Sambur, J. B.; Chen, P. Approaches to single-nanoparticle catalysis. Annu. Rev. Phys. Chem. 2014, 65, 395–422.

    Article  CAS  Google Scholar 

  29. Hu, S. L.; Li, W. X. Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science 2021, 374, 1360–1365.

    Article  CAS  Google Scholar 

  30. Li, L. L.; Jiang, Y. F.; Zhang, T. H.; Cai, H. F.; Zhou, Y. L.; Lin, B. Y.; Lin, X. Y.; Zheng, Y.; Zheng, L. R.; Wang, X. Y. et al. Size sensitivity of supported Ru catalysts for ammonia synthesis: From nanoparticles to subnanometric clusters and atomic clusters. Chem 2022, 8, 749–768.

    Article  CAS  Google Scholar 

  31. Zhan, W. C.; Shu, Y.; Sheng, Y. J.; Zhu, H. Y.; Guo, Y. L.; Wang, L.; Guo, Y.; Zhang, J. S.; Lu, G. Z.; Dai, S. Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis. Angew, Chem., Int. Ed. 2017, 56, 4494–4498.

    Article  CAS  Google Scholar 

  32. Chen, T.; Zhang, Y. W.; Xu, W. L. Size-dependent catalytic kinetics and dynamics of Pd nanocubes: A single-particle study. Phys. Chem. Chem. Phys. 2016, 18, 22494–22502.

    Article  CAS  Google Scholar 

  33. Chen, T.; Chen, S.; Zhang, Y. W.; Qi, Y. F.; Zhao, Y. Z.; Xu, W. L.; Zeng, J. Catalytic kinetics of different types of surface atoms on shaped Pd nanocrystals. Angew, Chem., Int. Ed. 2016, 55, 1839–1843.

    Article  CAS  Google Scholar 

  34. Tarnev, T.; Aiyappa, H. B.; Botz, A.; Erichsen, T.; Ernst, A.; Andronescu, C.; Schuhmann, W. Scanning electrochemical cell microscopy investigation of single ZIF-derived nanocomposite particles as electrocatalysts for oxygen evolution in alkaline media. Angew. Chem., Int. Ed. 2019, 58, 14265–14269.

    Article  CAS  Google Scholar 

  35. Ustarroz, J.; Ornelas, I. M.; Zhang, G. H.; Perry, D.; Kang, M.; Bentley, C. L.; Walker, M.; Unwin, P. R. Mobility and poisoning of mass-selected platinum nanoclusters during the oxygen reduction reaction. ACS Catal. 2018, 8, 6775–6790.

    Article  CAS  Google Scholar 

  36. Chen, G. Y.; Song, X. Y.; Richardson, T. J. Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid State Lett. 2006, 9, A295–A298.

    Article  CAS  Google Scholar 

  37. Zhang, J. Y.; Qian, J. M.; Ran, J. Q.; Xi, P. X.; Yang, L. J.; Gao, D. Q. Engineering lower coordination atoms onto NiO/Co3O4 heterointerfaces for boosting oxygen evolution reactions. ACS Catal. 2020, 10, 12376–12384.

    Article  CAS  Google Scholar 

  38. Crespo-Quesada, M.; Yarulin, A.; Jin, M. S.; Xia, Y. N.; Kiwi-Minsker, L. Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: Which sites are most active and selective? J. Am. Chem. Soc. 2011, 133, 12787–12794.

    Article  CAS  Google Scholar 

  39. Van Hardeveld, R; Hartog, F. Statistics of surface atoms and surface sites on metal crystals. Surf. Sci. 1969, 15, 189–230.

    Article  CAS  Google Scholar 

  40. Kaatz, F. H.; Bultheel, A. Catalytic thermodynamic model for nanocluster adsorbates. Catal. Today 2021, 360, 157–164.

    Article  CAS  Google Scholar 

  41. Kanduč, M.; Kim, W. K.; Roa, R.; Dzubiella, J. How the shape and chemistry of molecular penetrants control responsive hydrogel permeability. ACS Nano 2021, 15, 614–624.

    Article  Google Scholar 

  42. Narayanan, R.; El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 2005, 109, 12663–12676.

    Article  CAS  Google Scholar 

  43. Laskar, M.; Skrabalak, S. E. Decoupling the geometric parameters of shape-controlled Pd nanocatalysts. ACS Catal. 2014, 4, 1120–1128.

    Article  CAS  Google Scholar 

  44. Li, G. Q.; Kobayashi, H.; Dekura, S.; Ikeda, R.; Kubota, Y.; Kato, K.; Takata, M.; Yamamoto, T.; Matsumura, S.; Kitagawa, H. Shape-dependent hydrogen-storage properties in Pd nanocrystals: Which does hydrogen prefer, octahedron (111) or cube (100)? J. Am. Chem. Soc. 2014, 136, 10222–10225.

    Article  CAS  Google Scholar 

  45. Chen, T.; Chen, S.; Song, P.; Zhang, Y. W.; Su, H. Y.; Xu, W. L.; Zeng, J. Single-molecule nanocatalysis reveals facet-dependent catalytic kinetics and dynamics of pallidium nanoparticles. ACS Catal. 2017, 7, 2967–2972.

    Article  CAS  Google Scholar 

  46. Li, S.; Chen, B. B.; Wang, Y.; Ye, M. Y.; Van Aken, P. A.; Cheng, C.; Thomas, A. Oxygen-evolving catalytic atoms on metal carbides. Nat. Mater. 2021, 20, 1240–1247.

    Article  CAS  Google Scholar 

  47. Zhai, Y. P.; Pierre, D.; Si, R.; Deng, W. L.; Ferrin, P.; Nilekar, A. U.; Peng, G. W.; Herron, J. A.; Bell, D. C.; Saltsburg, H. et al. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science 2010, 329, 1633–1636.

    Article  CAS  Google Scholar 

  48. Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. A stable single-site palladium catalyst for hydrogenations. Angew, Chem., Int. Ed. 2015, 54, 11265–11269.

    Article  Google Scholar 

  49. Poerwoprajitno, A. R.; Gloag, L.; Watt, J.; Cheong, S.; Tan, X.; Lei, H.; Tahini, H. A.; Henson, A.; Subhash, B.; Bedford, N. M. et al. A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nat. Catal. 2022, 5, 231–237.

    Article  CAS  Google Scholar 

  50. Wu, Y. Q.; Wu, Q.; Zhang, Q. Q.; Lou, Z. Z.; Liu, K. F.; Ma, Y. D.; Wang, Z. Y.; Zheng, Z. K.; Cheng, H. F.; Liu, Y. Y. et al. An organometal halide perovskite supported Pt single-atom photocatalyst for H2 evolution. Energy Environ. Sci. 2022, 15, 1271–1281.

    Article  CAS  Google Scholar 

  51. Zhang, J. J.; Wang, E. Q.; Cui, S. Q.; Yang, S. B.; Zou, X. L.; Gong, Y. J. Single-atom Pt anchored on oxygen vacancy of monolayer Ti3C2Tx for superior hydrogen evolution. Nano Lett. 2022, 22, 1398–1405.

    Article  CAS  Google Scholar 

  52. Zhang, L.; Wang, Q.; Li, L. L.; Banis, M. N.; Li, J. J.; Adair, K.; Sun, Y. P.; Li, R. Y.; Zhao, Z. J.; Gu, M. et al. Single atom surface engineering: A new strategy to boost electrochemical activities of Pt catalysts. Nano Energy 2022, 93, 106813.

    Article  CAS  Google Scholar 

  53. Cao, Y. H.; Guo, L.; Dan, M.; Doronkin, D. E.; Han, C. Q.; Rao, Z. Q.; Liu, Y.; Meng, J.; Huang, Z. A.; Zheng, K. B. et al. Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction. Nat. Commun. 2021, 12, 1675.

    Article  CAS  Google Scholar 

  54. Liu, H.; Grasseschi, D.; Dodda, A.; Fujisawa, K.; Olson, D.; Kahn, E.; Zhang, F.; Zhang, T. Y.; Lei, Y.; Branco, R. B. N. et al. Spontaneous chemical functionalization via coordination of Au single atoms on monolayer MoS2. Sci. Adv. 2020, 6, eabc93.

    Article  Google Scholar 

  55. Sun, H.; Yin, H. Q.; Shi, W. X.; Yang, L. L.; Guo, X. W.; Lin, H.; Zhang, J. W.; Lu, T. B.; Zhang, Z. M. Porous β-FeOOH nanotube stabilizing Au single atom for high-efficiency nitrogen fixation. Nano Res. 2022, 15, 3026–3033.

    Article  CAS  Google Scholar 

  56. Xi, W.; Wang, K.; Shen, Y. L.; Ge, M. K.; Deng, Z. L.; Zhao, Y. F.; Cao, Q. E.; Ding, Y.; Hu, G. Z.; Luo, J. Dynamic Co-catalysis of Au single atoms and nanoporous Au for methane pyrolysis. Nat. Commun. 2020, 11, 1919.

    Article  CAS  Google Scholar 

  57. He, Q.; Qiao, S. C.; Zhou, Q.; Zhou, Y. Z.; Shou, H. W.; Zhang, P. J.; Xu, W.; Liu, D. B.; Chen, S. M.; Wu, X. J. et al. Confining high-valence iridium single sites onto nickel oxyhydroxide for robust oxygen evolution. Nano Lett. 2022, 22, 3832–3839.

    Article  CAS  Google Scholar 

  58. Iemhoff, A.; Vennewald, M.; Artz, J.; Mebrahtu, C.; Meledin, A.; Weirich, T. E.; Hartmann, H.; Besmehn, A.; Aramini, M.; Venturini, F. et al. On the stability of isolated iridium sites in N-rich frameworks against agglomeration under reducing conditions. ChemCatChem 2022, 14, e202200179.

    Article  CAS  Google Scholar 

  59. Liu, C. X.; Pan, G. H.; Liang, N. J.; Hong, S.; Ma, J. Y.; Liu, Y. Z. Ir single atom catalyst loaded on amorphous carbon materials with high HER activity. Adv. Sci. 2022, 9, 2105392.

    Article  CAS  Google Scholar 

  60. Chen, W.; Wu, B. B.; Wang, Y. Y.; Zhou, W.; Li, Y. Y.; Liu, T. Y.; Xie, C.; Xu, L. T.; Du, S. Q.; Song, M. L. et al. Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy Environ. Sci. 2021, 14, 6428–6440.

    Article  CAS  Google Scholar 

  61. Jiang, D.; Yao, Y. G.; Li, T. Y.; Wan, G.; Pereira-Hernandez, X. I.; Lu, Y. B.; Tian, J. S.; Khivantsev, K.; Engelhard, M. H.; Sun, C. J. et al. Tailoring the local environment of platinum in single-atom Pt1/CeO2 catalysts for robust low-temperature CO oxidation. Angew, Chem., Int. Ed. 2021, 60, 26054–26062.

    Article  CAS  Google Scholar 

  62. Lai, W. H.; Zhang, L. F.; Yan, Z. C.; Hua, W. B.; Indris, S.; Lei, Y. J.; Liu, H. W.; Wang, Y. X.; Hu, Z. P.; Liu, H. K. et al. Activating inert surface Pt single atoms via subsurface doping for oxygen reduction reaction. Nano Lett. 2021, 21, 7970–7978.

    Article  CAS  Google Scholar 

  63. Liu, X. D.; Ge, X.; Cao, J.; Xiao, Y.; Wang, Y.; Zhang, W.; Song, P.; Xu, W. L. Revealing the catalytic kinetics and dynamics of individual Pt atoms at the single-molecule level. Proc. Natl. Acad. Sci. USA 2022, 119, e2114639119.

    Article  CAS  Google Scholar 

  64. Grunes, J.; Zhu, J.; Anderson, E. A.; Somorjai, G. A. Ethylene hydrogenation over platinum nanoparticle array model catalysts fabricated by electron beam lithography: Determination of active metal surface area. J. Phys. Chem. B 2002, 106, 11463–11468.

    Article  CAS  Google Scholar 

  65. Moseler, M.; Walter, M.; Yoon, B.; Landman, U.; Habibpour, V.; Harding, C.; Kunz, S.; Heiz, U. Oxidation state and symmetry of magnesia-supported Pd13Ox nanocatalysts influence activation barriers of CO oxidation. J. Am. Chem. Soc. 2012, 134, 7690–7699.

    Article  CAS  Google Scholar 

  66. Chen, T.; Zhang, Y. W.; Xu, W. L. Single-molecule nanocatalysis reveals catalytic activation energy of single nanocatalysts. J. Am. Chem. Soc. 2016, 138, 12414–12421.

    Article  CAS  Google Scholar 

  67. Völkening, S.; Bedürftig, K.; Jacobi, K.; Wintterlin, J.; Ertl, G. Dual-path mechanism for catalytic oxidation of hydrogen on platinum surfaces. Phys. Rev. Lett. 1999, 83, 2672–2675.

    Article  Google Scholar 

  68. Yu, X. W.; Ye, S. Y. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst. J. Power Sour. 2007, 172, 145–154.

    Article  CAS  Google Scholar 

  69. Zhang, Y. W.; Chen, T.; Alia, S.; Pivovar, B. S.; Xu, W. L. Single-molecule nanocatalysis shows in situ deactivation of Pt/C electrocatalysts during the hydrogen-oxidation reaction. Angew, Chem., Int. Ed. 2016, 55, 3086–3090.

    Article  CAS  Google Scholar 

  70. Jiang, Y. Y.; Ni, P. J.; Chen, C. X.; Lu, Y. Z.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 2018, 8, 1801909.

    Article  Google Scholar 

  71. Yamanaka, I.; Onizawa, T.; Takenaka, S.; Otsuka, K. Direct and continuous production of hydrogen peroxide with 93% selectivity using a fuel-cell system. Angew, Chem., Int. Ed. 2003, 42, 3653–3655.

    Article  CAS  Google Scholar 

  72. Martínez-Huitle, C. A.; Ferro, S. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chem. Soc. Rev. 2006, 35, 1324–1340.

    Article  Google Scholar 

  73. Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew, Chem., Int. Ed. 2006, 45, 6962–6984.

    Article  CAS  Google Scholar 

  74. Mounfield III, W. P.; Garg, A.; Shao-Horn, Y.; Roman-Leshkov, Y. Electrochemical oxygen reduction for the production of hydrogen peroxide. Chem 2018, 4, 18–19.

    Article  CAS  Google Scholar 

  75. Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Hooch Antink, W.; Park, S.; Lee, K. S. et al. Atomic-level tuning of Co−N−C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442.

    Article  CAS  Google Scholar 

  76. Wang, Y. H.; Pegis, M. L.; Mayer, J. M.; Stahl, S. S. Molecular cobalt catalysts for O2 reduction: Low-overpotential production of H2O2 and comparison with iron-based catalysts. J. Am. Chem. Soc. 2017, 139, 16458–16461.

    Article  CAS  Google Scholar 

  77. Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew, Chem., Int. Ed. 2016, 55, 2058–2062.

    Article  CAS  Google Scholar 

  78. Lu, Y. Z.; Jiang, Y. Y.; Gao, X. H.; Wang, X. D.; Chen, W. Strongly coupled pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2014, 136, 11687–11697.

    Article  CAS  Google Scholar 

  79. Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis. ACS Catal. 2018, 8, 4064–4081.

    Article  CAS  Google Scholar 

  80. Xiao, Y.; Hong, J.; Wang, X.; Chen, T.; Hyeon, T.; Xu, W. L. Revealing kinetics of two-electron oxygen reduction reaction at single-molecule level. J. Am. Chem. Soc. 2020, 142, 13201–13209.

    Article  CAS  Google Scholar 

  81. Liu, C. H.; Tseng, W. L. Oxidase-functionalized Fe3O4 nanoparticles for fluorescence sensing of specific substrate. Anal. Chim. Acta 2011, 703, 87–93.

    Article  CAS  Google Scholar 

  82. Shashkova, S.; Leake, M. C. Single-molecule fluorescence microscopy review: Shedding new light on old problems. Biosci. Rep. 2017, 37, BSR20170031.

    Article  CAS  Google Scholar 

  83. Wang, W. X.; Shen, H.; Moringo, N. A.; Carrejo, N. C.; Ye, F.; Robinson, J. T.; Landes, C. F. Super-temporal-resolved microscopy reveals multistep desorption kinetics of α-lactalbumin from nylon. Langmuir 2018, 34, 6697–6702.

    Article  CAS  Google Scholar 

  84. Moringo, N. A.; Shen, H.; Bishop, L. D. C.; Wang, W. X.; Landes, C. F. Enhancing analytical separations using super-resolution microscopy. Annu. Rev. Phys. Chem. 2018, 69, 353–375.

    Article  CAS  Google Scholar 

  85. Huang, B.; Wang, W. Q.; Bates, M.; Zhuang, X. W. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 2008, 319, 810–813.

    Article  CAS  Google Scholar 

  86. Zhang, Y. W.; Lucas, J. M.; Song, P.; Beberwyck, B.; Fu, Q.; Xu, W. L.; Alivisatos, A. P. Superresolution fluorescence mapping of single-nanoparticle catalysts reveals spatiotemporal variations in surface reactivity. Proc. Natl. Acad. Sci. USA 2015, 112, 8959–8964.

    Article  CAS  Google Scholar 

  87. Zhou, X. C.; Andoy, N. M.; Liu, G. K.; Choudhary, E.; Han, K. S.; Shen, H.; Chen, P. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nat. Nanotechnol. 2012, 7, 237–241.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21925205, 22072145, 21733004, and 21721003), the National Key Research and Development Program of China (Nos. 2017YFE9127900 and 2018YFB1502302), and K. C. Wong Education Foundation and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Zhang, D. & Xu, W. Recent progress in single-molecule fluorescence technology in nanocatalysis. Nano Res. 15, 10316–10327 (2022). https://doi.org/10.1007/s12274-022-4713-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4713-8

Keywords

Navigation