Skip to main content
Log in

Advances and challenges in developing cocatalysts for photocatalytic conversion of carbon dioxide to fuels

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The global adoption of efficient sustainable energy sources is a crucial step toward meeting energy demands while achieving carbon emission reduction targets. Solar energy has become a clean and cost-competitive alternative to traditional fossil fuels, but the intermittent nature of sunlight results in challenges associated with energy storage and transport. Photocatalytic carbon dioxide reduction intends to mimic natural photosynthesis for utilizing sunlight to chemically convert water and CO2 into fuels. In this process, the solar energy is captured and stored in fuels, so-called solar fuels, for widespread on-demand use. Heterogeneous solar fuel production systems are multi-component, comprising light-harvesting (photosensitizer) and catalytic (cocatalyst) units. Cocatalysts are indispensable for photocatalytic CO2 reduction systems, which promote charge carrier separation and transport, reduce the reaction activation energy, and alter the reaction route, thereby enhancing the activity and selectivity of the photocatalytic reactions. This review presents a comprehensive summary of the recent advancements in cocatalysts for photocatalytic CO2 reduction reaction (CO2RR), with the purpose of providing new insights and guidance to the field with regard to research directions and best practices. We summarize how various cocatalysts including inorganic nanoparticles, metal complexes, enzymes, and bacteria can be combined with semiconductor photosensitizer for light-driven photocatalytic CO2RR. Side-by-side comparisons reveal the strengths and limitations of each kind of cocatalysts and how lessons extracted from studying natural photosynthetic systems can be applied to investigations of artificial photosynthesis, presenting an outlook discussing possible future concepts for a more effective photocatalytic CO2 reduction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

    Article  CAS  Google Scholar 

  2. Wang, Q.; Pornrungroj, C.; Linley, S.; Reisner, E. Strategies to improve light utilization in solar fuel synthesis. Nat. Energy 2022, 7, 13–24.

    Article  Google Scholar 

  3. Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.

    Article  CAS  Google Scholar 

  4. You, J. K.; Xiao, M.; Wang, Z. L.; Wang, L. Z. Non-noble metal-based cocatalysts for photocatalytic CO2 reduction. J. CO2Util. 2022, 55, 101817.

    Article  CAS  Google Scholar 

  5. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638.

    Article  CAS  Google Scholar 

  6. Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.

    Article  CAS  Google Scholar 

  7. Lai, T. H.; Katsumata, K. I.; Hsu, Y. J. In situ charge carrier dynamics of semiconductor nanostructures for advanced photoelectrochemical and photocatalytic applications. Nanophotonics 2020, 10, 777–795.

    Article  Google Scholar 

  8. Gong, E.; Ali, S.; Hiragond, C. B.; Kim, H. S.; Powar, N. S.; Kim, D.; Kim, H.; In, S. I. Solar fuels: Research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ. Sci. 2022, 15, 880–937.

    Article  CAS  Google Scholar 

  9. Zhang, Y. Z.; Xia, B. Q.; Ran, J. R.; Davey, K.; Qiao, S. Z. Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv. Energy Mater. 2020, 10, 1903879.

    Article  CAS  Google Scholar 

  10. Dalle, K. E.; Warnan, J.; Leung, J. J.; Reuillard, B.; Karmel, I. S.; Reisner, E. Electro- and solar-driven fuel synthesis with first row transition metal complexes. Chem. Rev. 2019, 119, 2752–2875.

    Article  CAS  Google Scholar 

  11. Sun, Z. Y.; Ma, T.; Tao, H. C.; Fan, Q.; Han, B. X. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 2017, 3, 560–587.

    Article  CAS  Google Scholar 

  12. Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.

    Article  CAS  Google Scholar 

  13. Matsubara, Y.; Grills, D. C.; Kuwahara, Y. Thermodynamic aspects of electrocatalytic CO2 reduction in acetonitrile and with an ionic liquid as solvent or electrolyte. ACS Catal. 2015, 5, 6440–6452.

    Article  CAS  Google Scholar 

  14. Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 2010, 3, 43–81.

    Article  CAS  Google Scholar 

  15. Berardi, S.; Drouet, S.; Francàs, L.; Gimbert-Suriñach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Molecular artificial photosynthesis. Chem. Soc. Rev. 2014, 43, 7501–7519.

    Article  CAS  Google Scholar 

  16. Fujita, E. Photochemical carbon dioxide reduction with metal complexes. Coord. Chem. Rev. 1999, 185–186, 373–384.

    Article  Google Scholar 

  17. Liu, X.; Inagaki, S.; Gong, J. L. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation. Angew. Chem., Int. Ed. 2016, 55, 14924–14950.

    Article  CAS  Google Scholar 

  18. Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082.

    Article  CAS  Google Scholar 

  19. Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

    Article  CAS  Google Scholar 

  20. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372–7408.

    Article  CAS  Google Scholar 

  21. Anpo, M.; Yamashita, H.; Ichihashi, Y.; Ehara, S. Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. J. Electroanal. Chem. 1995, 396, 21–26.

    Article  Google Scholar 

  22. Freund, H. J.; Roberts, M. W. Surface chemistry of carbon dioxide. Surf. Sci. Rep. 1996, 25, 225–273.

    Article  Google Scholar 

  23. White, J. L.; Baruch, M. F.; Pander III, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935.

    Article  CAS  Google Scholar 

  24. Ji, Y. F.; Luo, Y. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2 (101) surface: The essential role of oxygen vacancy. J. Am. Chem. Soc. 2016, 138, 15896–15902.

    Article  CAS  Google Scholar 

  25. Liu, L. J.; Zhao, H. L.; Andino, J. M.; Li, Y. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2012, 2, 1817–1828.

    Article  CAS  Google Scholar 

  26. Xi, G. C.; Ouyang, S. X.; Li, P.; Ye, J. H.; Ma, Q.; Su, N.; Bai, H.; Wang, C. Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem., Int. Ed. 2012, 51, 2395–2399.

    Article  CAS  Google Scholar 

  27. Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 821–831.

    Article  CAS  Google Scholar 

  28. Kong, X. Y.; Choo, Y. Y.; Chai, S. P.; Soh, A. K.; Mohamed, A. R. Oxygen vacancy induced Bi2WO6 for the realization of photocatalytic CO2 reduction over the full solar spectrum: From the UV to the NIR region. Chem. Commun. 2016, 52, 14242–14245.

    Article  CAS  Google Scholar 

  29. Di, J.; Zhu, C.; Ji, M. X.; Duan, M. L.; Long, R.; Yan, C.; Gu, K. Z.; Xiong, J.; She, Y. B.; Xia, J. X. et al. Defect-rich Bi12O17Cl2 nanotubes self-accelerating charge separation for boosting photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 14847–14851.

    Article  CAS  Google Scholar 

  30. Wu, J.; Li, X. D.; Shi, W.; Ling, P. Q.; Sun, Y. F.; Jiao, X. C.; Gao, S.; Liang, L.; Xu, J. Q.; Yan, W. S. et al. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew. Chem., Int. Ed. 2018, 57, 8719–8723.

    Article  CAS  Google Scholar 

  31. Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O’Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824–7831.

    Article  CAS  Google Scholar 

  32. Chen, F.; Ma, Z. Y.; Ye, L. Q.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H. W. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv. Mater. 2020, 32, 1908350.

    Article  CAS  Google Scholar 

  33. Liu, L. Z.; Huang, H. W.; Chen, F.; Yu, H. J.; Tian, N.; Zhang, Y. H.; Zhang, T. R. Cooperation of oxygen vacancies and 2D ultrathin structure promoting CO2 photoreduction performance of Bi4Ti3O12. Sci. Bull. 2020, 65, 934–943.

    Article  CAS  Google Scholar 

  34. Tu, W. G.; Xu, Y.; Wang, J. J.; Zhang, B. W.; Zhou, T. H.; Yin, S. M.; Wu, S. Y.; Li, C. M.; Huang, Y. Z.; Zhou, Y. et al. Investigating the role of tunable nitrogen vacancies in graphitic carbon nitride nanosheets for efficient visible-light-driven H2 evolution and CO2 reduction. ACS Sustainable Chem. Eng. 2017, 5, 7260–7268.

    Article  CAS  Google Scholar 

  35. Jiao, X. C.; Chen, Z. W.; Li, X. D.; Sun, Y. F.; Gao, S.; Yan, W. S.; Wang, C. M.; Zhang, Q.; Lin, Y.; Luo, Y. et al. Defect-mediated electron-hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 7586–7594.

    Article  CAS  Google Scholar 

  36. Woolerton, T. W.; Sheard, S.; Chaudhary, Y. S.; Armstrong, F. A. Enzymes and bio-inspired electrocatalysts in solar fuel devices. Energy Environ. Sci. 2012, 5, 7470–7490.

    Article  CAS  Google Scholar 

  37. Zhu, S. S.; Wang, D. W. Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 2017, 7, 1700841.

    Article  Google Scholar 

  38. Meyer, T. J. Chemical approaches to artificial photosynthesis. Acc. Chem. Res. 1989, 22, 163–170.

    Article  CAS  Google Scholar 

  39. Ishitani, O.; Inoue, C.; Suzuki, Y.; Ibusuki, T. Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. J. Photochem. Photobiol. A: Chem. 1993, 72, 269–271.

    Article  CAS  Google Scholar 

  40. Anpo, M.; Yamashita, H.; Ikeue, K.; Fujii, Y.; Zhang, S. G.; Ichihashi, Y.; Park, D. R.; Suzuki, Y.; Koyano, K.; Tatsumi, T. Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catal. Today 1998, 44, 327–332.

    Article  CAS  Google Scholar 

  41. Anpo, M.; Yamashita, H.; Ichihashi, Y.; Fujii, Y.; Honda, M. Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt. J. Phys. Chem. B 1997, 101, 2632–2636.

    Article  CAS  Google Scholar 

  42. Feng, X. J.; Sloppy, J. D.; LaTempa, T. J.; Paulose, M.; Komarneni, S.; Bao, N. Z.; Grimes, C. A. Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays: Application to the photocatalytic reduction of carbon dioxide. J. Mater. Chem. 2011, 21, 13429–13433.

    Article  CAS  Google Scholar 

  43. Wang, W. N.; An, W. J.; Ramalingam, B.; Mukherjee, S.; Niedzwiedzki, D. M.; Gangopadhyay, S.; Biswas, P. Size and structure matter: Enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 2012, 134, 11276–11281.

    Article  CAS  Google Scholar 

  44. Yu, J. G.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839–8842.

    Article  CAS  Google Scholar 

  45. Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T. Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton Trans. 2015, 44, 1249–1257.

    Article  CAS  Google Scholar 

  46. Li, K.; Peng, B. S.; Peng, T. Y. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 2016, 6, 7485–7527.

    Article  CAS  Google Scholar 

  47. Jo, S. W.; Kwak, B. S.; Kim, K. M.; Do, J. Y.; Park, N. K.; Ryu, S. O.; Ryu, H. J.; Baek, J. I.; Kang, M. Effectively CO2 photoreduction to CH4 by the synergistic effects of Ca and Ti on Ca-loaded TiSiMCM-41 mesoporous photocatalytic systems. Appl. Surf. Sci. 2015, 355, 891–901.

    Article  CAS  Google Scholar 

  48. Jeong, S.; Kim, W. D.; Lee, S.; Lee, K.; Lee, S.; Lee, D.; Lee, D. C. Bi2O3 as a promoter for Cu/TiO2 photocatalysts for the selective conversion of carbon dioxide into methane. ChemCatChem 2016, 8, 1641–1645.

    Article  CAS  Google Scholar 

  49. Xie, S. J.; Wang, Y.; Zhang, Q. H.; Fan, W. Q.; Deng, W. P.; Wang, Y. Photocatalytic reduction of CO2 with H2O: Significant enhancement of the activity of Pt−TiO2 in CH4 formation by addition of MgO. Chem. Commun. 2013, 49, 2451–2453.

    Article  CAS  Google Scholar 

  50. Meng, X. G.; Ouyang, S. X.; Kako, T.; Li, P.; Yu, Q.; Wang, T.; Ye, J. H. Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. Chem. Commun. 2014, 50, 11517–11519.

    Article  CAS  Google Scholar 

  51. Matsumoto, Y.; Obata, M.; Hombo, J. Photocatalytic reduction of carbon dioxide on p-type CaFe2O4 powder. J. Phys. Chem. 1994, 98, 2950–2951.

    Article  CAS  Google Scholar 

  52. Sun, Z. X.; Fischer, J. M. T. A.; Li, Q.; Hu, J.; Tang, Q. J.; Wang, H. Q.; Wu, Z. B.; Hankel, M.; Searles, D. J.; Wang, L. Z. Enhanced CO2 photocatalytic reduction on alkali-decorated graphitic carbon nitride. Appl. Catal. B: Environ. 2017, 216, 146–155.

    Article  CAS  Google Scholar 

  53. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  CAS  Google Scholar 

  54. Bai, S.; Wang, X. J.; Hu, C. Y.; Xie, M. L.; Jiang, J.; Xiong, Y. J. Two-dimensional g-C3N4: An ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. Chem. Commun. 2014, 50, 6094–6097.

    Article  CAS  Google Scholar 

  55. Yui, T.; Kan, A.; Saitoh, C.; Koike, K.; Ibusuki, T.; Ishitani, O. Photochemical reduction of CO2 using TiO2: Effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2. ACS Appl. Mat. Interfaces 2011, 3, 2594–2600.

    Article  CAS  Google Scholar 

  56. Wang, S. Y.; Teramura, K.; Hisatomi, T.; Domen, K.; Asakura, H.; Hosokawa, S.; Tanaka, T. Optimized synthesis of Ag-modified Al-doped SrTiO3 photocatalyst for the conversion of CO2 using H2O as an electron donor. ChemistrySelect 2020, 5, 8779–8786.

    Article  CAS  Google Scholar 

  57. Baran, T.; Wojtyła, S.; Dibenedetto, A.; Aresta, M.; Macyk, W. Zinc sulfide functionalized with ruthenium nanoparticles for photocatalytic reduction of CO2. Appl. Catal. B: Environ. 2015, 178, 170–176.

    Article  CAS  Google Scholar 

  58. AlOtaibi, B.; Fan, S. Z.; Wang, D. F.; Ye, J. H.; Mi, Z. T. Wafer-level artificial photosynthesis for CO2 reduction into CH4 and CO using GaN nanowires. ACS Catal. 2015, 5, 5342–5348.

    Article  CAS  Google Scholar 

  59. Zhou, H.; Guo, J. J.; Li, P.; Fan, T. X.; Zhang, D.; Ye, J. H. Leaf-architectured 3D hierarchical artificial photosynthetic system of perovskite titanates towards CO2 photoreduction into hydrocarbon fuels. Sci. Rep. 2013, 3, 1667.

    Article  Google Scholar 

  60. Xie, S. J.; Wang, Y.; Zhang, Q. H.; Deng, W. P.; Wang, Y. MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal. 2014, 4, 3644–3653.

    Article  CAS  Google Scholar 

  61. Chen, R.; Gao, G. D.; Luo, J. S. A water-stable organolead iodide material for overall photocatalytic CO2 reduction. Nano Res., in press, https://doi.org/10.1007/s12274-022-4216-7.

  62. Tseng, I. H.; Wu, J. C. S. Chemical states of metal-loaded titania in the photoreduction of CO2. Catal. Today 2004, 97, 113–119.

    Article  CAS  Google Scholar 

  63. Park, H.; Ou, H. H.; Colussi, A. J.; Hoffmann, M. R. Artificial photosynthesis of C1−C3 hydrocarbons from water and CO2 on titanate nanotubes decorated with nanoparticle elemental copper and CdS quantum dots. J. Phys. Chem. A 2015, 119, 4658–4666.

    Article  CAS  Google Scholar 

  64. Shi, G. D.; Yang, L.; Liu, Z. W.; Chen, X.; Zhou, J. Q.; Yu, Y. Photocatalytic reduction of CO2 to CO over copper decorated g-C3N4 nanosheets with enhanced yield and selectivity. Appl. Surf. Sci. 2018, 427, 1165–1173.

    Article  CAS  Google Scholar 

  65. Billo, T.; Fu, F. Y.; Raghunath, P.; Shown, I.; Chen, W. F.; Lien, H. T.; Shen, T. H.; Lee, J. F.; Chan, T. S.; Huang, K. Y. et al. Artificial photosynthesis: Ni-nanocluster modified black TiO2 with dual active sites for selective photocatalytic CO2 reduction. Small 2018, 14, 1870008.

    Article  Google Scholar 

  66. Zhong, W. F.; Sa, R. J.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141, 7615–7621.

    Article  CAS  Google Scholar 

  67. Li, X. G.; Bi, W. T.; Wang, Z.; Zhu, W. G.; Chu, W. S.; Wu, C. Z.; Xie, Y. Surface-adsorbed ions on TiO2 nanosheets for selective photocatalytic CO2 reduction. Nano Res. 2018, 11, 3362–3370.

    Article  CAS  Google Scholar 

  68. Zhang, Z. Y.; Wang, Z.; Cao, S. W.; Xue, C. Au/Pt nanoparticle-decorated TiO2 nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion. J. Phys. Chem. C 2013, 117, 25939–25947.

    Article  CAS  Google Scholar 

  69. Xiong, Z.; Wang, H. B.; Xu, N. Y.; Li, H. L.; Fang, B. Z.; Zhao, Y. C.; Zhang, J. Y.; Zheng, C. G. Photocatalytic reduction of CO2 on Pt2+−Pt0/TiO2 nanoparticles under UV/Vis light irradiation: A combination of Pt2+ doping and Pt nanoparticles deposition. Int. J. Hydrogen Energy 2015, 40, 10049–10062.

    Article  CAS  Google Scholar 

  70. Uner, D.; Oymak, M. M. On the mechanism of photocatalytic CO2 reduction with water in the gas phase. Catal. Today 2012, 181, 82–88.

    Article  CAS  Google Scholar 

  71. Takemoto, M.; Tokudome, Y.; Kikkawa, S.; Teramura, K.; Tanaka, T.; Okada, K.; Murata, H.; Nakahira, A.; Takahashi, M. Imparting CO2 reduction selectivity to ZnGa2O4 photocatalysts by crystallization from hetero nano assembly of amorphous-like metal hydroxides. RSC Adv. 2020, 10, 8066–8073.

    Article  CAS  Google Scholar 

  72. Wang, Z.; Teramura, K.; Huang, Z. A.; Hosokawa, S.; Sakata, Y.; Tanaka, T. Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO2 with H2O through the modification of Ag-loaded Ga2O3 with a ZnGa2O4 layer. Catal. Sci. Technol. 2016, 6, 1025–1032.

    Article  CAS  Google Scholar 

  73. Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 2011, 133, 20863–20868.

    Article  CAS  Google Scholar 

  74. Takayama, T.; Iwase, A.; Kudo, A. Photocatalytic water splitting and CO2 reduction over KCaSrTa5O15 nanorod prepared by a polymerized complex method. Bull. Chem. Soc. Japan 2015, 88, 538–543.

    Article  CAS  Google Scholar 

  75. Wang, Z.; Teramura, K.; Hosokawa, S.; Tanaka, T. Photocatalytic conversion of CO2 in water over Ag-modified La2Ti2O7. Appl. Catal. B: Environ. 2015, 163, 241–247.

    Article  CAS  Google Scholar 

  76. Fang, B. Z.; Bonakdarpour, A.; Reilly, K.; Xing, Y. L.; Taghipour, F.; Wilkinson, D. P. Large-scale synthesis of TiO2 microspheres with hierarchical nanostructure for highly efficient photodriven reduction of CO2 to CH4. ACS Appl. Mater. Interfaces 2014, 6, 15488–15498.

    Article  CAS  Google Scholar 

  77. Liu, L. J.; Pitts, D. T.; Zhao, H. L.; Zhao, C. Y.; Li, Y. Silver-incorporated bicrystalline (anatase/brookite) TiO2 microspheres for CO2 photoreduction with water in the presence of methanol. Appl. Catal. A: Gen. 2013, 467, 474–482.

    Article  CAS  Google Scholar 

  78. Raskó, J. FTIR study of the photoinduced dissociation of CO2 on titania-supported noble metals. Catal. Lett. 1998, 56, 11–15.

    Article  Google Scholar 

  79. Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.

    Article  CAS  Google Scholar 

  80. Zhang, X. J.; Han, F.; Shi, B.; Farsinezhad, S.; Dechaine, G. P.; Shankar, K. Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays. Angew. Chem., Int. Ed. 2012, 51, 12732–12735.

    Article  CAS  Google Scholar 

  81. Neaţu, Ş.; Maciá-Agulló, J. A.; Concepción, P.; Garcia, H. Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J. Am. Chem. Soc. 2014, 136, 15969–15976.

    Article  Google Scholar 

  82. Lee, S.; Jeong, S.; Kim, W. D.; Lee, S.; Lee, K.; Bae, W. K.; Moon, J. H.; Lee, S.; Lee, D. C. Low-coordinated surface atoms of CuPt alloy cocatalysts on TiO2 for enhanced photocatalytic conversion of CO2. Nanoscale 2016, 8, 10043–10048.

    Article  CAS  Google Scholar 

  83. Kang, Q.; Wang, T.; Li, P.; Liu, L. Q.; Chang, K.; Li, M.; Ye, J. H. Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au-Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays. Angew. Chem., Int. Ed. 2015, 54, 841–845.

    Article  CAS  Google Scholar 

  84. Li, H. L.; Lei, Y. G.; Huang, Y.; Fang, Y. P.; Xu, Y. H.; Zhu, L.; Li, X. Photocatalytic reduction of carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible light irradiation. J. Nat. Gas Chem. 2011, 20, 145–150.

    Article  CAS  Google Scholar 

  85. Júnior, M. A. M.; Morais, A.; Nogueira, A. F. Boosting the solar-light-driven methanol production through CO2 photoreduction by loading Cu2O on TiO2-pillared K2Ti4O9. Microporous Mesoporous Mater. 2016, 234, 1–11.

    Article  Google Scholar 

  86. Yamashita, H.; Nishiguchi, H.; Kamada, N.; Anpo, M.; Teraoka, Y.; Hatano, H.; Ehara, S.; Kikui, K.; Palmisano, L.; Sclafani, A. et al. Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts. Res. Chem. Intermed. 1994, 20, 815–823.

    Article  CAS  Google Scholar 

  87. Slamet; Nasution, H. W.; Purnama, E.; Kosela, S.; Gunlazuardi, J. Photocatalytic reduction of CO2 on copper-doped titania catalysts prepared by improved-impregnation method. Catal. Commun. 2005, 6, 313–319.

    Article  CAS  Google Scholar 

  88. Uzunova, E. L.; Seriani, N.; Mikosch, H. CO2 conversion to methanol on Cu(I) oxide nanolayers and clusters:An electronic structure insight into the reaction mechanism. Phys. Chem. Chem. Phys. 2015, 17, 11088–11094.

    Article  CAS  Google Scholar 

  89. Zhu, S. Y.; Liang, S. J.; Tong, Y. C.; An, X. H.; Long, J. L.; Fu, X. Z.; Wang, X. X. Photocatalytic reduction of CO2 with H2O to CH4 on Cu(I) supported TiO2 nanosheets with defective {001} facets. Phys. Chem. Chem. Phys. 2015, 17, 9761–9770.

    Article  CAS  Google Scholar 

  90. Wu, J. C. S.; Lin, H. M.; Lai, C. L. Photo reduction of CO2 to methanol using optical-fiber photoreactor. Appl. Catal. A: Gen. 2005, 296, 194–200.

    Article  CAS  Google Scholar 

  91. Liu, L. J.; Gao, F.; Zhao, H. L.; Li, Y. Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl. Catal. B: Environ. 2013, 134–135, 349–358.

    Article  Google Scholar 

  92. Shoji, S.; Yin, G.; Nishikawa, M.; Atarashi, D.; Sakai, E.; Miyauchi, M. Photocatalytic reduction of CO2 by CuxO nanocluster loaded SrTiO3 nanorod thin film. Chem. Phys. Lett. 2016, 658, 309–314.

    Article  CAS  Google Scholar 

  93. Torres, J. A.; Nogueira, A. E.; da Silva, G. T. S. T.; Lopes, O. F.; Wang, Y. J.; He, T.; Ribeiro, C. Enhancing TiO2 activity for CO2 photoreduction through MgO decoration. J. CO2Util. 2020, 35, 106–114.

    Article  CAS  Google Scholar 

  94. Jeyalakshmi, V.; Mahalakshmy, R.; Krishnamurthy, K. R.; Viswanathan, B. Photocatalytic reduction of carbon dioxide in alkaline medium on La modified sodium tantalate with different co-catalysts under UV-visible radiation. Catal. Today 2016, 266, 160–167.

    Article  CAS  Google Scholar 

  95. Tsai, C. W.; Chen, H. M.; Liu, R. S.; Asakura, K.; Chan, T. S. Ni@NiO core-shell structure-modified nitrogen-doped InTaO4 for solar-driven highly efficient CO2 reduction to methanol. J. Phys. Chem. C 2011, 115, 10180–10186.

    Article  CAS  Google Scholar 

  96. Dai, W. L.; Yu, J. J.; Deng, Y. Q.; Hu, X.; Wang, T. Y.; Luo, X. B. Facile synthesis of MoS2/Bi2WO6 nanocomposites for enhanced CO2 photoreduction activity under visible light irradiation. Appl. Surf. Sci. 2017, 403, 230–239.

    Article  CAS  Google Scholar 

  97. Tu, W. G.; Li, Y. C.; Kuai, L. B.; Zhou, Y.; Xu, Q. F.; Li, H. J.; Wang, X. Y.; Xiao, M.; Zou, Z. G. Construction of unique two-dimensional MoS2−TiO2 hybrid nanojunctions: MoS2 as a promising cost-effective cocatalyst toward improved photocatalytic reduction of CO2 to methanol. Nanoscale 2017, 9, 9065–9070.

    Article  CAS  Google Scholar 

  98. Lee, H.; Kwak, B. S.; Park, N. K.; Baek, J. I.; Ryu, H. J.; Kang, M. Assembly of a check-patterned CuSx−TiO2 film with an electron-rich pool and its application for the photoreduction of carbon dioxide to methane. Appl. Surf. Sci. 2017, 393, 385–396.

    Article  CAS  Google Scholar 

  99. Qin, H.; Guo, R. T.; Liu, X. Y.; Shi, X.; Wang, Z. Y.; Tang, J. Y.; Pan, W. G. 0D NiS2 quantum dots modified 2D g-C3N4 for efficient photocatalytic CO2 reduction. Colloids Surf. A: Physicochem. Eng. Asp. 2020, 600, 124912.

    Article  CAS  Google Scholar 

  100. Di, J.; Chen, C.; Zhu, C.; Song, P.; Duan, M. L.; Xiong, J.; Long, R.; Xu, M. Z.; Kang, L. X.; Guo, S. S. et al. Cobalt nitride as a novel cocatalyst to boost photocatalytic CO2 reduction. Nano Energy 2021, 79, 105429.

    Article  CAS  Google Scholar 

  101. Guo, Y. K.; Wang, Q.; Wang, M.; Shen, M.; Zhang, L. X.; Shi, J. L. FeP modified polymeric carbon nitride as a noble-metal-free photocatalyst for efficient CO2 reduction. Catal. Commun. 2021, 156, 106326.

    Article  CAS  Google Scholar 

  102. Zhang, X. D.; Yan, J.; Zheng, F. Y.; Zhao, J.; Lee, L. Y. S. Designing charge transfer route at the interface between WP nanoparticle and g-C3N4 for highly enhanced photocatalytic CO2 reduction reaction. Appl. Catal. B: Environ. 2021, 286, 119879.

    Article  CAS  Google Scholar 

  103. Zeng, Z. P.; Yan, Y. B.; Chen, J.; Zan, P.; Tian, Q. H.; Chen, P. Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Adv. Funct. Mater. 2018, 29, 1806500.

    Article  Google Scholar 

  104. Chen, L. Y.; Huang, K. L.; Xie, Q. R.; Lam, S. M.; Sin, J. C.; Su, T. M.; Ji, H. B.; Qin, Z. Z. The enhancement of photocatalytic CO2 reduction by the in situ growth of TiO2 on Ti3C2 MXene. Catal. Sci. Technol. 2021, 11, 1602–1614.

    Article  CAS  Google Scholar 

  105. Zhang, G.; Wang, G. C.; Liu, Y.; Liu, H. J.; Qu, J. H.; Li, J. H. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J. Am. Chem. Soc. 2016, 138, 14686–14693.

    Article  CAS  Google Scholar 

  106. Chen, W. F.; Muckerman, J. T.; Fujita, E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 2013, 49, 8896–8909.

    Article  CAS  Google Scholar 

  107. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

    Article  CAS  Google Scholar 

  108. Yang, J. H.; Wang, D. E.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909.

    Article  CAS  Google Scholar 

  109. Pan, Z.; Rohr, J.; Ye, Z.; Fishman, Z.; Zhu, Q.; Shen, X.; Hu, S. Elucidating charge separation in particulate photocatalysts using nearly-intrinsic semiconductors with small asymmetric band bending. Sustain. Energy Fuels 2019, 3, 850–864.

    Article  CAS  Google Scholar 

  110. Pan, Z. H.; Yanagi, R.; Wang, Q.; Shen, X.; Zhu, Q. H.; Xue, Y. D.; Röhr, J. A.; Hisatomi, T.; Domen, K.; Hu, S. Mutually-dependent kinetics and energetics of photocatalyst/co-catalyst/two-redox liquid junctions. Energy Environ. Sci. 2020, 13, 162–173.

    Article  CAS  Google Scholar 

  111. Liu, T.; Pan, Z. H.; Vequizo, J. J. M.; Kato, K.; Wu, B. B.; Yamakata, A.; Katayama, K.; Chen, B. L.; Chu, C. H.; Domen, K. Overall photosynthesis of H2O2 by an inorganic semiconductor. Nat. Commun. 2022, 13, 1034.

    Article  CAS  Google Scholar 

  112. Zhou, X. H.; Liu, R.; Sun, K.; Friedrich, D.; McDowell, M. T.; Yang, F.; Omelchenko, S. T.; Saadi, F. H.; Nielander, A. C.; Yalamanchili, S. et al. Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide. Energy Environ. Sci. 2015, 8, 2644–2649.

    Article  CAS  Google Scholar 

  113. Zhai, Q. G.; Xie, S. J.; Fan, W. Q.; Zhang, Q. H.; Wang, Y.; Deng, W. P.; Wang, Y. Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(I) oxide co-catalysts with a core-shell structure. Angew. Chem., Int. Ed. 2013, 52, 5776–5779.

    Article  CAS  Google Scholar 

  114. Manzi, A.; Simon, T.; Sonnleitner, C.; Döblinger, M.; Wyrwich, R.; Stern, O.; Stolarczyk, J. K.; Feldmann, J. Light-induced cation exchange for copper sulfide based CO2 reduction. J. Am. Chem. Soc. 2015, 137, 14007–14010.

    Article  CAS  Google Scholar 

  115. Shang, L.; Bian, T.; Zhang, B. H.; Zhang, D. H.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: Robust catalysts for oxidation and reduction reactions. Angew. Chem., Int. Ed. 2014, 53, 250–254.

    Article  CAS  Google Scholar 

  116. Zhao, Y. F.; Waterhouse, G. I. N.; Chen, G. B.; Xiong, X. Y.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chem. Soc. Rev. 2019, 48, 1972–2010.

    Article  CAS  Google Scholar 

  117. Cao, S. W.; Yu, J. G. Carbon-based H2-production photocatalytic materials. J. Photochem. Photobiol. C: Photochem. Rev. 2016, 27, 72–99.

    Article  CAS  Google Scholar 

  118. Xia, X. H.; Jia, Z. J.; Yu, Y.; Liang, Y.; Wang, Z.; Ma, L. L. Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon 2007, 45, 717–721.

    Article  CAS  Google Scholar 

  119. Gui, M. M.; Chai, S. P.; Xu, B. Q.; Mohamed, A. R. Enhanced visible light responsive MWCNT/TiO2 core-shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane. Sol. Energy Mater. Sol. Cells 2014, 122, 183–189.

    Article  CAS  Google Scholar 

  120. Wang, L. M.; Chen, W. L.; Zhang, D. D.; Du, Y. P.; Amal, R.; Qiao, S. Z.; Wu, J. B.; Yin, Z. Y. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 2019, 48, 5310–5349.

    Article  CAS  Google Scholar 

  121. Tu, W. G.; Zhou, Y.; Liu, Q.; Yan, S. C.; Bao, S. S.; Wang, X. Y.; Xiao, M.; Zou, Z. G. An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: Graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv. Funct. Mater. 2013, 23, 1743–1749.

    Article  CAS  Google Scholar 

  122. Liang, Y. T.; Vijayan, B. K.; Gray, K. A.; Hersam, M. C. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett. 2011, 11, 2865–2870.

    Article  CAS  Google Scholar 

  123. Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T. Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene-g-C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane. Chem. Commun. 2015, 51, 858–861.

    Article  CAS  Google Scholar 

  124. An, X. Q.; Li, K.; Tang, J. W. Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2. ChemSusChem 2014, 7, 1086–1093.

    Article  CAS  Google Scholar 

  125. Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 2015, 13, 757–770.

    Article  CAS  Google Scholar 

  126. Kong, X. Y.; Tan, W. L.; Ng, B. J.; Chai, S. P.; Mohamed, A. R. Harnessing Vis-NIR broad spectrum for photocatalytic CO2 reduction over carbon quantum dots-decorated ultrathin Bi2WO6 nanosheets. Nano Res. 2017, 10, 1720–1731.

    Article  CAS  Google Scholar 

  127. Li, H. T.; Zhang, X. Y.; MacFarlane, D. R. Carbon quantum dots/Cu2O heterostructures for solar-light-driven conversion of CO2 to methanol. Adv. Energy Mater. 2014, 5, 1401077.

    Article  Google Scholar 

  128. Wang, Y. G.; Bai, X.; Qin, H. F.; Wang, F.; Li, Y. G.; Li, X.; Kang, S. F.; Zuo, Y. H.; Cui, L. F. Facile one-step synthesis of hybrid graphitic carbon nitride and carbon composites as high-performance catalysts for CO2 photocatalytic conversion. ACS Appl. Mater. Interfaces 2016, 8, 17212–17219.

    Article  CAS  Google Scholar 

  129. Lu, Y. L.; Liu, M. H.; Zheng, N. C.; He, X.; Hu, R. T.; Wang, R. L.; Zhou, Q.; Hu, Z. F. Promoting the protonation step on the interface of titanium dioxide for selective photocatalytic reduction of CO2 to CH4 by using red phosphorus quantum dots. Nano Res. 2022, 15, 3042–3049.

    Article  CAS  Google Scholar 

  130. Han, C. Q.; Li, J.; Ma, Z. Y.; Xie, H. Q.; Waterhouse, G. I. N.; Ye, L. Q.; Zhang, T. R. Black phosphorus quantum dot/g-C3N4 composites for enhanced CO2 photoreduction to CO. Sci. China Mater. 2018, 61, 1159–1166.

    Article  CAS  Google Scholar 

  131. Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

    Article  CAS  Google Scholar 

  132. Lee, B. H.; Park, S.; Kim, M.; Sinha, A. K.; Lee, S. C.; Jung, E.; Chang, W. J.; Lee, K. S.; Kim, J. H.; Cho, S. P. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 2019, 18, 620–626.

    Article  CAS  Google Scholar 

  133. Tong, T.; Zhu, B. C.; Jiang, C. J.; Cheng, B.; Yu, J. G. Mechanistic insight into the enhanced photocatalytic activity of single-atom Pt, Pd or Au-embedded g-C3N4. Appl. Surf. Sci. 2018, 433, 1175–1183.

    Article  CAS  Google Scholar 

  134. Yanagi, R.; Zhao, T. S.; Solanki, D.; Pan, Z. H.; Hu, S. Charge separation in photocatalysts: Mechanisms, physical parameters, and design principles. ACS Energy Lett. 2022, 7, 432–452.

    Article  CAS  Google Scholar 

  135. Xiong, X. Y.; Mao, C. L.; Yang, Z. J.; Zhang, Q. H.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia. Adv. Energy Mater. 2020, 10, 2002928.

    Article  CAS  Google Scholar 

  136. Ma, M. Z.; Huang, Z. A.; Doronkin, D. E.; Fa, W. J.; Rao, Z. Q.; Zou, Y. Z.; Wang, R.; Zhong, Y. Q.; Cao, Y. H.; Zhang, R. Y. et al. Ultrahigh surface density of Co-N2C single-atom-sites for boosting photocatalytic CO2 reduction to methanol. Appl. Catal. B: Environ. 2022, 300, 120695.

    Article  CAS  Google Scholar 

  137. Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

    Article  CAS  Google Scholar 

  138. Peng, Y.; Lu, B. Z.; Chen, S. W. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 2018, 30, 1801995.

    Article  Google Scholar 

  139. Gao, C.; Low, J.; Long, R.; Kong, T. T.; Zhu, J. F.; Xiong, Y. J. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216.

    Article  CAS  Google Scholar 

  140. Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

    Article  CAS  Google Scholar 

  141. Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 2016, 138, 6292–6297.

    Article  CAS  Google Scholar 

  142. Li, Y.; Li, B. H.; Zhang, D. N.; Cheng, L.; Xiang, Q. J. Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity. ACS Nano 2020, 14, 10552–10561.

    Article  CAS  Google Scholar 

  143. Zhang, H. B.; Wei, J.; Dong, J. C.; Liu, G. G.; Shi, L.; An, P. F.; Zhao, G. X.; Kong, J. T.; Wang, X. J.; Meng, X. G. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem., Int. Ed. 2016, 55, 14310–14314.

    Article  CAS  Google Scholar 

  144. Shi, X. J.; Huang, Y.; Bo, Y. N.; Duan, D. L.; Wang, Z. Y.; Cao, J. J.; Zhu, G. Q.; Ho, W.; Wang, L. Q.; Huang, T. T. et al. Highly selective photocatalytic CO2 methanation with water vapor on single-atom platinum-decorated defective carbon nitride. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202203063.

  145. Ou, H. H.; Ning, S. B.; Zhu, P.; Chen, S. H.; Han, A. L.; Kang, Q.; Hu, Z. F.; Ye, J. H.; Wang, D. S.; Li, Y. D. Carbon nitride photocatalysts with integrated oxidation and reduction atomic active centers for improved CO2 conversion. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202206579.

  146. Wang, G.; He, C. T.; Huang, R.; Mao, J. J.; Wang, D. S.; Li, Y. D. Photoinduction of Cu single atoms decorated on UiO−66−NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 2020, 142, 19339–19345.

    Article  CAS  Google Scholar 

  147. Kumar, B.; Llorente, M.; Froehlich, J.; Dang, T.; Sathrum, A.; Kubiak, C. P. Photochemical and photoelectrochemical reduction of CO2. Annu. Rev. Phys. Chem. 2012, 63, 541–569.

    Article  CAS  Google Scholar 

  148. Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Transformation of carbon dioxide with homogeneous transition-metal catalysts: A molecular solution to a global challenge? Angew. Chem., Int. Ed. 2011, 50, 8510–8537.

    Article  CAS  Google Scholar 

  149. Morris, A. J.; Meyer, G. J.; Fujita, E. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc. Chem. Res. 2009, 42, 1983–1994.

    Article  CAS  Google Scholar 

  150. Leitner, W. The coordination chemistry of carbon dioxide and its relevance for catalysis: A critical survey. Coord. Chem. Rev. 1996, 153, 257–284.

    Article  CAS  Google Scholar 

  151. Windle, C. D.; Reisner, E. Heterogenised molecular catalysts for the reduction of CO2 to fuels. Chimia 2015, 69, 435–441.

    Article  CAS  Google Scholar 

  152. Bullock, R. M.; Das, A. K.; Appel, A. M. Surface immobilization of molecular electrocatalysts for energy conversion. Chem.—Eur. J. 2017, 23, 7626–7641.

    Article  CAS  Google Scholar 

  153. Coutard, N.; Kaeffer, N.; Artero, V. Molecular engineered nanomaterials for catalytic hydrogen evolution and oxidation. Chem. Commun. 2016, 52, 13728–13748.

    Article  CAS  Google Scholar 

  154. McCreery, R. L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646–2687.

    Article  CAS  Google Scholar 

  155. Das, A. K.; Engelhard, M. H.; Lense, S.; Roberts, J. A. S.; Bullock, R. M. Covalent attachment of diphosphine ligands to glassy carbon electrodes via Cu-catalyzed alkyne-azide cycloaddition metallation with Ni(II). Dalton Trans. 2015, 44, 12225–12233.

    Article  CAS  Google Scholar 

  156. Lydon, B. R.; Germann, A.; Yang, J. Y. Chemical modification of gold electrodes via non-covalent interactions. Inorg. Chem. Front. 2016, 3, 836–841.

    Article  CAS  Google Scholar 

  157. Brennan, B. J.; Portolés, M. J. L.; Liddell, P. A.; Moore, T. A.; Moore, A. L.; Gust, D. Comparison of silatrane, phosphonic acid, and carboxylic acid functional groups for attachment of porphyrin sensitizers to TiO2 in photoelectrochemical cells. Phys. Chem. Chem. Phys. 2013, 15, 16605–16614.

    Article  CAS  Google Scholar 

  158. Leung, J. J.; Warnan, J.; Ly, K. H.; Heidary, N.; Nam, D. H.; Kuehnel, M. F.; Reisner, E. Solar-driven reduction of aqueous CO2 with a cobalt bis(terpyridine)-based photocathode. Nat. Catal. 2019, 2, 354–365.

    Article  CAS  Google Scholar 

  159. Kuriki, R.; Matsunaga, H.; Nakashima, T.; Wada, K.; Yamakata, A.; Ishitani, O.; Maeda, K. Nature-inspired, highly durable CO2 reduction system consisting of a binuclear ruthenium(II) complex and an organic semiconductor using visible light. J. Am. Chem. Soc. 2016, 138, 5159–5170.

    Article  CAS  Google Scholar 

  160. Kumagai, H.; Sahara, G.; Maeda, K.; Higashi, M.; Abe, R.; Ishitani, O. Hybrid photocathode consisting of a CuGaO2 p-type semiconductor and a Ru(II)-Re(I) supramolecular photocatalyst: Non-biased visible-light-driven CO2 reduction with water oxidation. Chem. Sci. 2017, 8, 4242–4249.

    Article  CAS  Google Scholar 

  161. Suzuki, T. M.; Yoshino, S.; Takayama, T.; Iwase, A.; Kudo, A.; Morikawa, T. Z-schematic and visible-light-driven CO2 reduction using H2O as an electron donor by a particulate mixture of a Ru-complex/(CuGa)1−xZn2xS2 hybrid catalyst, BiVO4 and an electron mediator. Chem. Commun. 2018, 54, 10199–10202.

    Article  CAS  Google Scholar 

  162. Wang, Q.; Warnan, J.; Rodríguez-Jiménez, S.; Leung, J. J.; Kalathil, S.; Andrei, V.; Domen, K.; Reisner, E. Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nat. Energy 2020, 5, 703–710.

    Article  CAS  Google Scholar 

  163. Kuriki, R.; Yamamoto, M.; Higuchi, K.; Yamamoto, Y.; Akatsuka, M.; Lu, D. L.; Yagi, S.; Yoshida, T.; Ishitani, O.; Maeda, K. Robust binding between carbon nitride nanosheets and a binuclear ruthenium(II) complex enabling durable, selective CO2 reduction under visible light in aqueous solution. Angew. Chem., Int. Ed. 2017, 56, 4867–4871.

    Article  CAS  Google Scholar 

  164. Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 2017, 139, 7217–7223.

    Article  CAS  Google Scholar 

  165. Lin, L.; Hou, C. C.; Zhang, X. H.; Wang, Y. J.; Chen, Y.; He, T. Highly efficient visible-light driven photocatalytic reduction of CO2 over g-C3N4 nanosheets/tetra(4-carboxyphenyl)porphyrin iron(III) chloride heterogeneous catalysts. Appl. Catal. B: Environ. 2018, 221, 312–319.

    Article  CAS  Google Scholar 

  166. Aoi, S.; Mase, K.; Ohkubo, K.; Fukuzumi, S. Photocatalytic reduction of CO2 and H2O to CO and H2 with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes. Catal. Sci. Technol. 2016, 6, 4077–4080.

    Article  CAS  Google Scholar 

  167. Kuehnel, M. F.; Sahm, C. D.; Neri, G.; Lee, J. R.; Orchard, K. L.; Cowan, A. J.; Reisner, E. ZnSe quantum dots modified with a Ni(cyclam) catalyst for efficient visible-light driven CO2 reduction in water. Chem. Sci. 2018, 9, 2501–2509.

    Article  CAS  Google Scholar 

  168. Lian, S. C.; Kodaimati, M. S.; Weiss, E. A. Photocatalytically active superstructures of quantum dots and iron porphyrins for reduction of CO2 to CO in water. ACS Nano 2018, 12, 568–575.

    Article  CAS  Google Scholar 

  169. Neri, G.; Forster, M.; Walsh, J. J.; Robertson, C. M.; Whittles, T. J.; Farràs, P.; Cowan, A. J. Photochemical CO2 reduction in water using a co-immobilised nickel catalyst and a visible light sensitiser. Chem. Commun. 2016, 52, 14200–14203.

    Article  CAS  Google Scholar 

  170. Wakerley, D. W.; Reisner, E. Oxygen-tolerant proton reduction catalysis: Much O2 about nothing? Energy Environ. Sci. 2015, 8, 2283–2295.

    Article  CAS  Google Scholar 

  171. Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.

    Article  Google Scholar 

  172. Rao, H.; Schmidt, L. C.; Bonin, J.; Robert, M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 2017, 548, 74–77.

    Article  CAS  Google Scholar 

  173. Schlager, S.; Dibenedetto, A.; Aresta, M.; Apaydin, D. H.; Dumitru, L. M.; Neugebauer, H.; Sariciftci, N. S. Biocatalytic and bioelectrocatalytic approaches for the reduction of carbon dioxide using enzymes. Energy Technol. 2017, 5, 812–821.

    Article  CAS  Google Scholar 

  174. Singh, P.; Srivastava, R. Utilization of bio-inspired catalyst for CO2 reduction into green fuels: Recent advancement and future perspectives. J. CO2Util. 2021, 53, 101748.

    Article  CAS  Google Scholar 

  175. Rehm, F. B. H.; Chen, S. X.; Rehm, B. H. A. Bioengineering toward direct production of immobilized enzymes: A paradigm shift in biocatalyst design. Bioengineered 2018, 9, 6–11.

    Article  Google Scholar 

  176. Kornienko, N.; Zhang, J. Z.; Sakimoto, K. K.; Yang, P. D.; Reisner, E. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 2018, 13, 890–899.

    Article  CAS  Google Scholar 

  177. Woolerton, T. W.; Sheard, S.; Pierce, E.; Ragsdale, S. W.; Armstrong, F. A. CO2 photoreduction at enzyme-modified metal oxidenanoparticles. Energy Environ. Sci. 2011, 4, 2393–2399.

    Article  CAS  Google Scholar 

  178. Chaudhary, Y. S.; Woolerton, T. W.; Allen, C. S.; Warner, J. H.; Pierce, E.; Ragsdale, S. W.; Armstrong, F. A. Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals. Chem. Commun. 2012, 48, 58–60.

    Article  CAS  Google Scholar 

  179. Arsalan, A.; Younus, H. Enzymes and nanoparticles: Modulation of enzymatic activity via nanoparticles. Int. J. Biol. Macromol. 2018, 118, 1833–1847.

    Article  CAS  Google Scholar 

  180. Hwang, E. T.; Gu, M. B. Enzyme stabilization by nano/microsized hybrid materials. Eng. Life Sci. 2013, 13, 49–61.

    Article  CAS  Google Scholar 

  181. Jesionowski, T.; Zdarta, J.; Krajewska, B. Enzyme immobilization by adsorption: A review. Adsorption 2014, 20, 801–821.

    Article  CAS  Google Scholar 

  182. Parkinson, B. A.; Weaver, P. F. Photoelectrochemical pumping of enzymatic CO2 reduction. Nature 1984, 309, 148–149.

    Article  CAS  Google Scholar 

  183. Kim, J.; Lee, S. H.; Tieves, F.; Choi, D. S.; Hollmann, F.; Paul, C. E.; Park, C. B. Biocatalytic C=C bond reduction through carbon nanodot-sensitized regeneration of NADH analogues. Angew. Chem., Int. Ed. 2018, 57, 13825–13828.

    Article  CAS  Google Scholar 

  184. Miller, M.; Robinson, W. E.; Oliveira, A. R.; Heidary, N.; Kornienko, N.; Warnan, J.; Pereira, I. A. C.; Reisner, E. Interfacing formate dehydrogenase with metal oxides for the reversible electrocatalysis and solar-driven reduction of carbon dioxide. Angew. Chem., Int. Ed. 2019, 58, 4601–4605.

    Article  CAS  Google Scholar 

  185. Lee, S. Y.; Lim, S. Y.; Seo, D.; Lee, J. Y.; Chung, T. D. Light-driven highly selective conversion of CO2 to formate by electrosynthesized enzyme/cofactor thin film electrode. Adv. Energy Mater. 2016, 6, 1502207.

    Article  Google Scholar 

  186. Zhang, L. Y.; Can, M.; Ragsdale, S. W.; Armstrong, F. A. Fast and selective photoreduction of CO2 to CO catalyzed by a complex of carbon monoxide dehydrogenase, TiO2, and Ag nanoclusters. ACS Catal. 2018, 8, 2789–2795.

    Article  CAS  Google Scholar 

  187. Yadav, R. K.; Baeg, J. O.; Oh, G. H.; Park, N. J.; Kong, K. J.; Kim, J.; Hwang, D. W.; Biswas, S. K. A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2. J. Am. Chem. Soc. 2012, 134, 11455–11461.

    Article  CAS  Google Scholar 

  188. Fang, X.; Kalathil, S.; Reisner, E. Semi-biological approaches to solar-to-chemical conversion. Chem. Soc. Rev. 2020, 49, 4926–4952.

    Article  CAS  Google Scholar 

  189. Agapakis, C. M.; Boyle, P. M.; Silver, P. A. Natural strategies for the spatial optimization of metabolism in synthetic biology. Nat. Chem. Biol. 2012, 8, 527–535.

    Article  CAS  Google Scholar 

  190. Sakimoto, K. K.; Wong, A. B.; Yang, P. D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 2016, 351, 74–77.

    Article  CAS  Google Scholar 

  191. Nevin, K. P.; Woodard, T. L.; Franks, A. E.; Summers, Z. M.; Lovley, D. R. Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 2010, 1, e00103–10.

    Article  Google Scholar 

  192. Ye, J.; Yu, J.; Zhang, Y. Y.; Chen, M.; Liu, X.; Zhou, S. G.; He, Z. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid. Appl. Catal. B: Environ. 2019, 257, 117916.

    Article  CAS  Google Scholar 

  193. Kornienko, N.; Sakimoto, K. K.; Herlihy, D. M.; Nguyen, S. C.; Alivisatos, A. P.; Harris, C. B.; Schwartzberg, A.; Yang, P. D. Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production. Proc. Natl. Acad. Sci. USA 2016, 113, 11750–11755.

    Article  CAS  Google Scholar 

  194. Zhang, R. T.; He, Y.; Yi, J.; Zhang, L. J.; Shen, C. P.; Liu, S. J.; Liu, L. F.; Liu, B. H.; Qiao, L. Proteomic and metabolic elucidation of solar-powered biomanufacturing by bio-abiotic hybrid system. Chem 2020, 6, 234–249.

    Article  CAS  Google Scholar 

  195. Gai, P. P.; Yu, W.; Zhao, H.; Qi, R. L.; Li, F.; Liu, L. B.; Lv, F. T.; Wang, S. Solar-powered organic semiconductor-bacteria biohybrids for CO2 reduction into acetic acid. Angew. Chem., Int. Ed. 2020, 59, 7224–7229.

    Article  CAS  Google Scholar 

  196. Zhang, H.; Liu, H.; Tian, Z. Q.; Lu, D.; Yu, Y.; Cestellos-Blanco, S.; Sakimoto, K. K.; Yang, P. D. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 2018, 13, 900–905.

    Article  CAS  Google Scholar 

  197. Wang, B.; Jiang, Z. F.; Yu, J. C.; Wang, J. F.; Wong, P. K. Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system. Nanoscale 2019, 11, 9296–9301.

    Article  CAS  Google Scholar 

  198. Sakimoto, K. K.; Zhang, S. J.; Yang, P. D. Cysteine-cystine photoregeneration for oxygenic photosynthesis of acetic acid from CO2 by a tandem inorganic-biological hybrid system. Nano Lett. 2016, 16, 5883–5887.

    Article  CAS  Google Scholar 

  199. Chen, F.; Huang, H. W.; Ye, L. Q.; Zhang, T. R.; Zhang, Y. H.; Han, X. P.; Ma, T. Y. Thickness-dependent facet junction control of layered BiOIO3 single crystals for highly efficient CO2 photoreduction. Adv. Funct. Mater. 2018, 28, 1804284.

    Article  Google Scholar 

  200. Wang, S. Y.; Teramura, K.; Hisatomi, T.; Domen, K.; Asakura, H.; Hosokawa, S.; Tanaka, T. Highly selective photocatalytic conversion of carbon dioxide by water over Al−SrTiO3 photocatalyst modified with silver-metal dual cocatalysts. ACS Sustainable Chem. Eng. 2021, 9, 9327–9335.

    Article  CAS  Google Scholar 

  201. Mu, L. C.; Zhao, Y.; Li, A. L.; Wang, S. Y.; Wang, Z. L.; Yang, J. X.; Wang, Y.; Liu, T. F.; Chen, R. T.; Zhu, J. et al. Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting. Energy Environ. Sci. 2016, 9, 2463–2469.

    Article  CAS  Google Scholar 

  202. Wang, Q.; Kalathil, S.; Pornrungroj, C.; Sahm, C. D.; Reisner, E. Bacteria-photocatalyst sheet for sustainable carbon dioxide utilization. Nat. Catal. 2022, 5, 633–641.

    Article  CAS  Google Scholar 

  203. Kuk, S. K.; Singh, R. K.; Nam, D. H.; Singh, R.; Lee, J. K.; Park, C. B. Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade. Angew. Chem., Int. Ed. 2017, 56, 3827–3832.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the JSPS Leading Initiative for Excellent Young Researchers program (to Q. W.), the JST Fusion Oriented REsearch for disruptive Science and Technology program (to Q. W.), and the JSPS Grant-in-Aid for Young Scientists (Start-up) (No. 21K20485, to Q. W.; No. 20K22556, to Z. H. P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Pan, Z. Advances and challenges in developing cocatalysts for photocatalytic conversion of carbon dioxide to fuels. Nano Res. 15, 10090–10109 (2022). https://doi.org/10.1007/s12274-022-4705-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4705-8

Keywords

Navigation