Skip to main content
Log in

Free-standing Na2C6O6/MXene composite paper for high-performance organic sodium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sodium-ion batteries (SIBs) are regarded as the ideal low-cost choice for next-generation large-scale energy storage system. Carbonyl-based organic salt-disodium rhodizonate (Na2C6O6) with high theoretical specific capacity (501 mAh·g1) is considered as a promising cathode material for SIBs. However, the dissolution of active material in electrolyte and low electronic conductivity lead to rapidly capacity decay and poor rate performance. Herein, a simple method is designed to construct free-standing and flexible Ti3C2Tx Na2C6O6/MXene paper via vacuum-assisted filtration and antisolvent approach. The MXene can form an electronic conductive network, adsorb the active materials, and offer additional active sites for Na storage. The binder-free Na2C6O6/MXene paper delivers excellent electrochemical property with a high rate performance of 231 mAh·g1 at 1,000 mA·g1 and a high capacity of 215 mAh·g1 after 100 cycles. This work provides an attractive strategy for designing high-performance organic electrode materials of SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

    Article  Google Scholar 

  2. Wu, J. X.; Liu, S. L.; Rehman, Y.; Huang, T. Z.; Zhao, J. C.; Gu, Q. F.; Mao, J. F.; Guo, Z. P. Phase engineering of nickel sulfides to boost sodium- and potassium-ion storage performance. Adv. Funct. Mater. 2021, 31, 2010832.

    Article  CAS  Google Scholar 

  3. McBrayer, J. D.; Rodrigues, M. T. F.; Schulze, M. C.; Abraham, D. P.; Apblett, C. A.; Bloom, I.; Carroll, G. M.; Colclasure, A. M.; Fang, C.; Harrison, K. L. et al. Calendar aging of silicon-containing batteries. Nat. Energy 2021, 6, 866–872.

    Article  CAS  Google Scholar 

  4. Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

    Article  Google Scholar 

  5. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  Google Scholar 

  6. Luo, W.; Chen, X. Q.; Xia, Y.; Chen, M.; Wang, L. J.; Wang, Q. Q.; Li, W.; Yang, J. P. Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1701083.

    Article  Google Scholar 

  7. Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.

    Article  CAS  Google Scholar 

  8. Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

    Article  CAS  Google Scholar 

  9. Wang, T. Y.; Su, D. W.; Shanmukaraj, D.; Rojo, T.; Armand, M.; Wang, G. X. Electrode materials for sodium-ion batteries: Considerations on crystal structures and sodium storage mechanisms. Electrochem. Energy Rev. 2018, 1, 200–237.

    Article  CAS  Google Scholar 

  10. Wang, H. G.; Li, W.; Liu, D. P.; Feng, X. L.; Wang, J.; Yang, X. Y.; Zhang, X. B.; Zhu, Y. J.; Zhang, Y. Flexible electrodes for sodium-ion batteries: Recent progress and perspectives. Adv. Mater. 2017, 29, 1703012.

    Article  Google Scholar 

  11. Yuan, G. B.; Liu, D. P.; Feng, X. L.; Shao, M. Z.; Hao, Z. M.; Sun, T.; Yu, H. H.; Ge, H. Y.; Zuo, X. T.; Zhang, Y. In situ fabrication of porous CoxP hierarchical nanostructures on carbon fiber cloth with exceptional performance for sodium storage. Adv. Mater. 2022, 34, 2108985.

    Article  CAS  Google Scholar 

  12. Sun, T.; Feng, X. L.; Sun, Q. Q.; Yu, Y.; Yuan, G. B.; Xiong, Q.; Liu, D. P.; Zhang, X. B.; Zhang, Y. Solvation effect on the improved sodium storage performance of N-heteropentacenequinone for sodium-ion batteries. Angew. Chem. 2021, 133, 27010–27016.

    Article  Google Scholar 

  13. Ma, J. L.; Meng, F. L.; Yu, Y.; Liu, D. P.; Yan, J. M.; Zhang, Y.; Zhang, X. B.; Jiang, Q. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O2 batteries. Nat. Chem. 2019, 11, 64–70.

    Article  CAS  Google Scholar 

  14. Chen, Y. M.; Liang, W. F.; Li, S.; Zou, F.; Bhaway, S. M.; Qiang, Z.; Gao, M.; Vogt, B. D.; Zhu, Y. A nitrogen doped carbonized metal-organic framework for high stability room temperature sodium-sulfur batteries. J. Mater. Chem. A 2016, 4, 12471–12478.

    Article  CAS  Google Scholar 

  15. Sun, Y.; Guo, S. H.; Zhou, H. S. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy Environ. Sci. 2019, 12, 825–840.

    Article  CAS  Google Scholar 

  16. Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Polyanion-type electrode materials for sodium-ion batteries. Adv. Sci. 2017, 4, 1600275.

    Article  Google Scholar 

  17. Fang, Y. J.; Zhang, J. X.; Xiao, L. F.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Phosphate framework electrode materials for sodium ion batteries. Adv. Sci. 2017, 4, 1600392.

    Article  Google Scholar 

  18. Alvin, S.; Cahyadi, H. S.; Hwang, J.; Chang, W.; Kwak, S. K.; Kim, J. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv. Energy Mater. 2020, 10, 2000283.

    Article  CAS  Google Scholar 

  19. Hu, J. H.; Liang, R.; Tang, W.; He, H. Y.; Fan, C. Synthesis of polyanionic anthraquinones as new insoluble organic cathodes for organic Na-ion batteries. Int. J. Hydrogen Energy 2020, 45, 24573–24581.

    Article  CAS  Google Scholar 

  20. Liu, T.; Feng, X. L.; Jin, X.; Shao, M. Z.; Su, Y. T.; Zhang, Y.; Zhang, X. B. Protecting the lithium metal anode for a safe flexible lithium-air battery in ambient air. Angew. Chem. 2019, 131, 18408–18413.

    Article  Google Scholar 

  21. Chen, Y.; Wang, C. L. Designing high performance organic batteries. Acc. Chem. Res. 2020, 53, 2636–2647.

    Article  CAS  Google Scholar 

  22. Yu, Q. H.; Tang, W.; Hu, Y.; Gao, J.; Wang, M.; Liu, S. H.; Lai, H. H.; Xu, L.; Fan, C. Novel low-cost, high-energy-density (> 700 Wh·kg1) Li-rich organic cathodes for Li-ion batteries. Chem. Eng. J. 2021, 415, 128509.

    Article  CAS  Google Scholar 

  23. Xiong, M.; Tang, W.; Cao, B.; Yang, C. L.; Fan, C. A small-molecule organic cathode with fast charge-discharge capability for K-ion batteries. J. Mater. Chem. A 2019, 7, 20127–20131.

    Article  CAS  Google Scholar 

  24. Tang, W.; Liang, R.; Li, D.; Yu, Q. H.; Hu, J. H.; Cao, B.; Fan, C. Highly stable and high rate-performance Na-ion batteries using polyanionic anthraquinone as the organic cathode. ChemSusChem 2019, 12, 2181–2185.

    Article  CAS  Google Scholar 

  25. Luo, C.; Xu, G. L.; Ji, X.; Hou, S.; Chen, L.; Wang, F.; Jiang, J. J.; Chen, Z. H.; Ren, Y.; Amine, K. et al. Reversible redox chemistry of azo compounds for sodium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 2879–2883.

    Article  CAS  Google Scholar 

  26. Song, Z. P.; Zhan, H.; Zhou, Y. H. Polyimides: Promising energy-storage materials. Angew. Chem., Int. Ed. 2010, 49, 8444–8448.

    Article  CAS  Google Scholar 

  27. Xu, G. Y.; Nie, P.; Dou, H.; Ding, B.; Li, L. Y.; Zhang, X. G. Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater. Today 2017, 20, 191–209.

    Article  CAS  Google Scholar 

  28. Ma, C.; Wang, L. Y.; Shu, M. H.; Hou, C. C.; Wang, K. X.; Chen, J. S. Thiophene derivatives as electrode materials for high-performance sodium-ion batteries. J. Mater. Chem. A 2021, 9, 11530–11536.

    Article  CAS  Google Scholar 

  29. Wang, L. Y.; Ma, C.; Hou, C. C.; Wei, X.; Wang, K. X.; Chen, J. S. Construction of large non-localized π-electron system for enhanced sodium-ion storage. Small 2022, 18, 2105825.

    Article  CAS  Google Scholar 

  30. Hu, Y.; Tang, W.; Yu, Q. H.; Wang, X. X.; Liu, W. Q.; Hu, J. H.; Fan, C. Novel insoluble organic cathodes for advanced organic K-ion batteries. Adv. Funct. Mater. 2020, 30, 2000675.

    Article  CAS  Google Scholar 

  31. Rajagopalan, R.; Tang, Y. G.; Jia, C. K.; Ji, X. B.; Wang, H. Y. Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: Issues and solutions. Energy Environ. Sci. 2020, 13, 1568–1592.

    Article  CAS  Google Scholar 

  32. Häupler, B.; Wild, A.; Schubert, U. S. Carbonyls: Powerful organic materials for secondary batteries. Adv. Energy Mater. 2015, 5, 1402034.

    Article  Google Scholar 

  33. Wang, X. C.; Shang, Z. F.; Yang, A. K.; Zhang, Q.; Cheng, F. Y.; Jia, D. Z.; Chen, J. Combining quinone cathode and ionic liquid electrolyte for organic sodium-ion batteries. Chem 2019, 5, 364–375.

    Article  CAS  Google Scholar 

  34. Wang, L. Y.; Ma, C.; Wei, X.; Chang, B. B.; Wang, K. X.; Chen, J. S. Sodium phthalate as an anode material for sodium ion batteries: Effect of the bridging carbonyl group. J. Mater. Chem. A 2020, 8, 8469–8475.

    Article  CAS  Google Scholar 

  35. Chen, H. Y.; Armand, M.; Demailly, G.; Dolhem, F.; Poizot, P.; Tarascon, J. M. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 2008, 1, 348–355.

    Article  CAS  Google Scholar 

  36. Chen, H. Y.; Armand, M.; Courty, M.; Jiang, M.; Grey, C. P.; Dolhem, F.; Tarascon, J. M.; Poizot, P. Lithium salt of tetrahydroxybenzoquinone: Toward the development of a sustainable Li-ion battery. J. Am. Chem. Soc. 2009, 131, 8984–8988.

    Article  CAS  Google Scholar 

  37. Kim, H.; Seo, D. H.; Yoon, G.; Goddard III, W. A.; Lee, Y. S.; Yoon, W. S.; Kang, K. The reaction mechanism and capacity degradation model in lithium insertion organic cathodes, Li2C6O6, using combined experimental and first principle studies. J. Phys. Chem. Lett. 2014, 5, 3086–3092.

    Article  CAS  Google Scholar 

  38. Chihara, K.; Chujo, N.; Kitajou, A.; Okada, S. Cathode properties of Na2C6O6 for sodium-ion batteries. Electrochim. Acta 2013, 110, 240–246.

    Article  CAS  Google Scholar 

  39. Wang, C. L.; Fang, Y. G.; Xu, Y.; Liang, L. Y.; Zhou, M.; Zhao, H. P.; Lei, Y. Manipulation of disodium rhodizonate: Factors for fast-charge and fast-discharge sodium-ion batteries with long-term cyclability. Adv. Funct. Mater. 2016, 26, 1777–1786.

    Article  CAS  Google Scholar 

  40. Wang, Y. Q.; Ding, Y.; Pan, L. J.; Shi, Y.; Yue, Z. H.; Shi, Y.; Yu, G. H. Understanding the size-dependent sodium storage properties of Na2C6O6-based organic electrodes for sodium-ion batteries. Nano Lett. 2016, 16, 3329–3334.

    Article  CAS  Google Scholar 

  41. Huang, Y.; Jiang, G. D.; Xiong, J.; Yang, C. X.; Ai, Q.; Wu, H.; Yuan, S. D. Recrystallization synthesis of disodium rhodizonate-conductive polyaniline composite with high cyclic performance as cathode material of sodium-ion battery. Appl. Surf. Sci. 2020, 499, 143849.

    Article  CAS  Google Scholar 

  42. Ni, J. F.; Li, L. Self-supported 3D array electrodes for sodium microbatteries. Adv. Funct. Mater. 2018, 28, 1704880.

    Article  Google Scholar 

  43. Chen, W. H.; Zhang, X. X.; Mi, L. W.; Liu, C. T.; Zhang, J. M.; Cui, S. Z.; Feng, X. M.; Cao, Y. L.; Shen, C. Y. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries. Adv. Mater. 2019, 31, 1806664.

    Article  Google Scholar 

  44. Ni, J. F.; Fu, S. D.; Wu, C.; Maier, J.; Yu, Y.; Li, L. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv. Mater. 2016, 28, 2259–2265.

    Article  CAS  Google Scholar 

  45. Liu, Y. S.; Liu, X.; Xu, S. M.; Bai, Y. L.; Ma, C.; Bai, W. L.; Wu, X. Y.; Wei, X.; Wang, K. X.; Chen, J. S. 3D ordered macroporous MoO2 attached on carbonized cloth for high performance freestanding binder-free lithium-sulfur electrodes. J. Mater. Chem. A 2019, 7, 24524–24531.

    Article  CAS  Google Scholar 

  46. Fu, S. D.; Ni, J. F.; Xu, Y.; Zhang, Q.; Li, L. Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries. Nano Lett. 2016, 16, 4544–4551.

    Article  CAS  Google Scholar 

  47. Ni, J. F.; Wang, W. C.; Wu, C.; Liang, H. C.; Maier, J.; Yu, Y.; Li, L. Highly reversible and durable Na storage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture. Adv. Mater. 2017, 29, 1605607.

    Article  Google Scholar 

  48. Zhang, Y. L.; Mu, Z. J.; Lai, J. P.; Chao, Y. G.; Yang, Y.; Zhou, P.; Li, Y. J.; Yang, W. X.; Xia, Z. H.; Guo, S. J. MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano 2019, 13, 2167–2175.

    CAS  Google Scholar 

  49. Wei, C. L.; Tao, Y.; An, Y. L.; Tian, Y.; Zhang, Y. C.; Feng, J. K.; Qian, Y. T. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv. Funct. Mater. 2020, 30, 2004613.

    Article  CAS  Google Scholar 

  50. Luo, J. M.; Wang, C. L.; Wang, H.; Hu, X. F.; Matios, E.; Lu, X.; Zhang, W. K.; Tao, X. Y.; Li, W. Y. Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv. Funct. Mater. 2019, 29, 1805946.

    Article  Google Scholar 

  51. Luo, J. M.; Matios, E.; Wang, H.; Tao, X. Y.; Li, W. Y. Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. InfoMat 2020, 2, 1057–1076.

    Article  CAS  Google Scholar 

  52. Jiang, H. Y.; Lin, X. H.; Wei, C. L.; Zhang, Y. C.; Feng, J. K.; Tian, X. L. Sodiophilic Mg2+-decorated Ti3C2 MXene for dendrite-free sodium metal batteries with carbonate-based electrolytes. Small 2022, 18, 2107637.

    Article  CAS  Google Scholar 

  53. Luo, J. M.; Fang, C.; Jin, C. B.; Yuan, H. D.; Sheng, O. W.; Fang, R. Y.; Zhang, W. K.; Huang, H.; Gan, Y. P.; Xia, Y. et al. Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. J. Mater. Chem. A 2018, 6, 7794–7806.

    Article  CAS  Google Scholar 

  54. Guo, D.; Ming, F. W.; Su, H.; Wu, Y. Q.; Wahyudi, W.; Li, M. L.; Hedhili, M. N.; Sheng, G.; Li, L. J.; Alshareef, H. N. et al. MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li-S battery. Nano Energy 2019, 61, 478–485.

    Article  CAS  Google Scholar 

  55. Zhao, Q.; Zhu, Q. Z.; Liu, Y.; Xu, B. Status and prospects of MXene-based lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2100457.

    Article  CAS  Google Scholar 

  56. Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

    Article  CAS  Google Scholar 

  57. Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.

    Article  CAS  Google Scholar 

  58. Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681.

    Article  CAS  Google Scholar 

  59. Li, J. M.; Kurra, N.; Seredych, M.; Meng, X.; Wang, H. Z.; Gogotsi, Y. Bipolar carbide-carbon high voltage aqueous lithium-ion capacitors. Nano Energy 2019, 56, 151–159.

    Article  CAS  Google Scholar 

  60. Tian, Y.; An, Y. L.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. J. Mater. Chem. A 2019, 7, 9716–9725.

    Article  CAS  Google Scholar 

  61. Lee, M.; Hong, J.; Lopez, J.; Sun, Y. M.; Feng, D. W.; Lim, K.; Chueh, W. C.; Toney, M. F.; Cui, Y.; Bao, Z. N. High-performance sodium-organic battery by realizing four-sodium storage in disodium rhodizonate. Nat. Energy 2017, 2, 861–868.

    Article  CAS  Google Scholar 

  62. Ding, L.; Wei, Y. Y.; Wang, Y. J.; Chen, H. B.; Caro, J.; Wang, H. H. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem., Int. Ed. 2017, 56, 1825–1829.

    Article  CAS  Google Scholar 

  63. Wang, C. Y.; Zheng, Z. J.; Feng, Y. Q.; Ye, H.; Cao, F. F.; Guo, Z. P. Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy 2020, 74, 104817.

    Article  CAS  Google Scholar 

  64. Tan, L. W.; Wei, C. L.; Zhang, Y. C.; Xiong, S. L.; Li, H.; Feng, J. K. Self-assembled, highly-lithiophilic and well-aligned biomass engineered MXene paper enables dendrite-free lithium metal anode in carbonate-based electrolyte. J. Energy Chem. 2022, 69, 221–230.

    Article  CAS  Google Scholar 

  65. Takahashi, M.; Kaya, K.; Ito, M. Resonance Raman scattering and the Jahn-Teller effect of oxocarbon ions. Chem. Phys. 1978, 35, 293–306.

    Article  CAS  Google Scholar 

  66. Wang, X.; Zhang, P. J.; Tang, X. Y.; Guan, J. J.; Lin, X. H.; Wang, Y. J.; Dong, X.; Yue, B. B.; Yan, J. Y.; Li, K. et al. Structure and electrical performance of Na2C6O6 under high pressure. J. Phys. Chem. C 2019, 123, 17163–17169.

    Article  CAS  Google Scholar 

  67. Wei, C. L.; Tan, L. W.; Zhang, Y. C.; Xi, B. J.; Xiong, S. L.; Feng, J. K. MXene/organics heterostructures enable ultrastable and high-rate lithium/sodium batteries. ACS Appl. Mater. Interfaces 2022, 14, 2979–2988.

    Article  CAS  Google Scholar 

  68. Liu, Y. T.; Zhang, P.; Sun, N.; Anasori, B.; Zhu, Q. Z.; Liu, H.; Gogotsi, Y.; Xu, B. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 2018, 30, 1707334.

    Article  Google Scholar 

  69. Meng, R. J.; Huang, J. M.; Feng, Y. T.; Zu, L. H.; Peng, C. X.; Zheng, L. R.; Zheng, L.; Chen, Z. B.; Liu, G. L.; Chen, B. J. et al. Black phosphorus quantum dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv. Energy Mater. 2018, 8, 1801514.

    Article  Google Scholar 

  70. Tian, Y.; An, Y. L.; Wei, C. L.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 2019, 13, 11676–11685.

    Article  CAS  Google Scholar 

  71. Luo, C.; Fan, X. L.; Ma, Z. H.; Gao, T.; Wang, C. S. Self-healing chemistry between organic material and binder for stable sodium-ion batteries. Chem 2017, 3, 1050–1062.

    Article  CAS  Google Scholar 

  72. Yamashita, T.; Momida, H.; Oguchi, T. First-principles investigation of a phase transition in NaxC6O6 as an organic cathode material for Na-ion batteries: Role of intermolecule bonding of C6O6. J. Phys. Soc. Japan 2015, 84, 074703.

    Article  Google Scholar 

  73. Xia, X. H.; Deng, S. J.; Xie, D.; Wang, Y. D.; Feng, S. S.; Wu, J. B.; Tu, J. P. Boosting sodium ion storage by anchoring MoO2 on vertical graphene arrays. J. Mater. Chem. A 2018, 6, 15546–15552.

    Article  CAS  Google Scholar 

  74. An, Y. L.; Tian, Y.; Wei, H.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Porosity- and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with MXene for lithium-metal anode. Adv. Funct. Mater. 2020, 30, 1908721.

    Article  CAS  Google Scholar 

  75. Zhang, Q. K.; Zhang, Y. C.; Wei, C. L.; An, Y. L.; Tan, L. W.; Xiong, S. L.; Feng, J. K. Highly reversible lithium metal-organic battery enabled by a freestanding MXene interlayer. J. Power Sources 2022, 521, 230963.

    Article  CAS  Google Scholar 

  76. Jeon, M.; Jun, B. M.; Kim, S.; Jang, M.; Park, C. M.; Snyder, S. A.; Yoon, Y. A review on MXene-based nanomaterials as adsorbents in aqueous solution. Chemosphere 2020, 261, 127781.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (No. ZR2020JQ19), Taishan Scholars Program of Shandong Province (Nos. tsqn201812002, ts20190908, and ts201511004), the Young Scholars Program of Shandong University (No. 2016WLJH03), Shenzhen Fundamental Research Program (No. JCYJ20190807093405503), and the National Natural Science Foundation of China (Nos. 51972198 and 61633015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkui Feng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, Y., Jiang, H. et al. Free-standing Na2C6O6/MXene composite paper for high-performance organic sodium-ion batteries. Nano Res. 16, 458–465 (2023). https://doi.org/10.1007/s12274-022-4696-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4696-5

Keywords

Navigation