Skip to main content
Log in

High selective epoxidation of 2-methylpropene over a Mo-based oxametallacycle reinforced nano composite

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Compared with the gas-solid phase reactions, the epoxidation of light olefins in the liquid phase could realize the highly selective preparation of epoxides at a lower temperature. Nevertheless, the C-C bond of light olefins is more difficult to activate, and it is still a challenge to realize the dual activation of the oxidant and light olefins in one reaction system. In this contribution, an oxametallacycle reinforced nanocomposite (Mo(O2)2@RT) is prepared via an oxidative pretreatment strategy, and its epoxidation performance to 2-methylpropene in liquid-phase with tert-butyl hydroperoxide (TBHP) as an oxidant is evaluated. A set of advanced characterizations including field emission scanning electron microscopy, X-ray photoelectron spectroscopy, in-situ Fourier transform infrared spectroscopy (FT-IR), electron spin-resonance spectroscopy, and high-resolution mass spectrometer are implemented to confirm the physicochemical properties and the catalytic behaviors of Mo(O2)2@RT. This catalyst has a fast kinetic response and exhibits excellent catalytic activity in 2-methylpropene epoxidation to produce 2-methylpropylene oxide (MPO; select.: 99.7%; yield: 92%), along with good reusability and scalability. Moreover, the main epoxidation mechanism is deduced that TBHP is activated by Mo(O2)2@RT to generate the highly active tert-butyl peroxide radical, which realizes the epoxidation of 2-methylpropene to yield MPO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Monai, M.; Gambino, M.; Wannakao, S.; Weckhuysen, B. M. Propane to olefins tandem catalysis: A selective route towards light olefins production. Chem. Soc. Rev. 2021, 50, 11503–11529.

    Article  CAS  Google Scholar 

  2. He, Y.; Shi, H. Z.; Johnson, O.; Joseph, B.; Kuhn, J. N. Selective and stable in-promoted Fe catalyst for syngas conversion to light olefins. ACS Catal. 2021, 11, 15177–15186.

    Article  CAS  Google Scholar 

  3. Wang, S.; Zhang, L.; Wang, P. F.; Liu, X. C.; Chen, Y. Y.; Qin, Z. F.; Dong, M.; Wang, J. G.; He, L.; Olsbye, U. et al. Highly effective conversion of CO2 into light olefins abundant in ethene. Chem 2022, 8, 1376–1394.

    Article  CAS  Google Scholar 

  4. Jorgensen, K. A. Transition-metal-catalyzed epoxidations. Chem. Rev. 1989, 89, 431–458.

    Article  Google Scholar 

  5. Amini, M.; Haghdoost, M. M.; Bagherzadeh, M. Monomeric and dimeric oxido-peroxido tungsten(VI) complexes in catalytic and stoichiometric epoxidation. Coord. Chem. Rev. 2014, 268, 83–100.

    Article  CAS  Google Scholar 

  6. Li, L. X.; Huang, S. S.; Song, J. J.; Yang, N. T.; Liu, J. W.; Chen, Y. Y.; Sun, Y. H.; Jin, R. C.; Zhu, Y. Ultrasmall Au10 clusters anchored on pyramid-capped rectangular TiO2 for olefin oxidation. Nano Res. 2016, 9, 1182–1192.

    Article  CAS  Google Scholar 

  7. Yan, W. J.; Zhang, G. Y.; Yan, H.; Liu, Y. B.; Chen, X. B.; Feng, X.; Jin, X.; Yang, C. H. Liquid-phase epoxidation of light olefins over W and Nb nanocatalysts. ACS Sustainable Chem. Eng. 2018, 6, 4423–4452.

    Article  CAS  Google Scholar 

  8. Khatib, S. J.; Oyama, S. T. Direct oxidation of propylene to propylene oxide with molecular oxygen: A review. Catal. Rev. 2015, 57, 306–344.

    Article  CAS  Google Scholar 

  9. Li, T. H.; Zuo, Y.; Guo, Y. Z.; Yang, H.; Liu, M.; Guo, X. W. Highly stable TS-1 extrudates for 1-butene epoxidation through improving the heat conductivity. Catal. Sci. Technol. 2020, 10, 6152–6160.

    Article  CAS  Google Scholar 

  10. Xiong, C.; He, Y. R.; Xu, D. J.; Liu, X. H.; Xue, C.; Zhou, X. T.; Ji, H. B. Enhanced oxygen transfer over bifunctional Mo-based oxametallacycle catalyst for epoxidation of propylene. J. Colloid Interface Sci. 2022, 611, 564–577.

    Article  CAS  Google Scholar 

  11. Zhan, C.; Wang, Q. X.; Zhou, L. Y.; Han, X.; Wanyan, Y.; Chen, J. Y.; Zheng, Y. P.; Wang, Y.; Fu, G.; Xie, Z. X. et al. Critical roles of doping Cl on Cu2O nanocrystals for direct epoxidation of propylene by molecular oxygen. J. Am. Chem. Soc. 2020, 142, 14134–14141.

    Article  CAS  Google Scholar 

  12. Leow, W. R.; Lum, Y.; Ozden, A.; Wang, Y. H.; Nam, D. H.; Chen, B.; Wicks, J.; Zhuang, T. T.; Li, F. W.; Sinton, D. et al. Chloridemediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 2020, 368, 1228–1233.

    Article  CAS  Google Scholar 

  13. Gordon, C. P.; Engler, H.; Tragl, A. S.; Plodinec, M.; Lunkenbein, T.; Berkessel, A.; Teles, J. H.; Parvulescu, A. N.; Copéret, C. Efficient epoxidation over dinuclear sites in titanium silicalite-1. Nature 2020, 586, 708–713.

    Article  CAS  Google Scholar 

  14. Ko, M.; Kim, Y.; Woo, J.; Lee, B.; Mehrotra, R.; Sharma, P.; Kim, J.; Hwang, S. W.; Jeong, H. Y.; Lim, H. et al. Direct propylene epoxidation with oxygen using a photo-electro-heterogeneous catalytic system. Nat. Catal. 2022, 5, 37–44.

    Article  CAS  Google Scholar 

  15. Xiong, W.; Gu, X. K.; Zhang, Z. H.; Chai, P.; Zang, Y. J.; Yu, Z. Y.; Li, D.; Zhang, H.; Liu, Z.; Huang, W. X. Fine cubic Cu2O nanocrystals as highly selective catalyst for propylene epoxidation with molecular oxygen. Nat. Commun. 2021, 12, 5921.

    Article  CAS  Google Scholar 

  16. Lei, Y.; Mehmood, F.; Lee, S.; Greeley, J.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Meyer, R. J.; Redfern, P. C. et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 2010, 328, 224–228.

    Article  CAS  Google Scholar 

  17. Barton, J. L. Electrification of the chemical industry. Science 2020, 368, 1181–1182.

    Article  CAS  Google Scholar 

  18. Bregante, D. T.; Tan, J. Z.; Schultz, R. L.; Ayla, E. Z.; Potts, D. S.; Torres, C.; Flaherty, D. W. Catalytic consequences of oxidant, alkene, and pore structures on alkene epoxidations within titanium silicates. ACS Catal. 2020, 11, 10169–10184.

    Article  Google Scholar 

  19. Xi, Z. W.; Zhou, N.; Sun, Y.; Li, K. L. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide. Science 2001, 292, 1139–1141.

    Article  CAS  Google Scholar 

  20. Xia, Q. H.; Ge, H. Q.; Ye, C. P.; Liu, Z. M.; Su, K. X. Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation. Chem. Rev. 2005, 105, 1603–1662.

    Article  CAS  Google Scholar 

  21. McGarrigle, E. M.; Gilheany, D. G. Chromium- and manganese-salen promoted epoxidation of alkenes. Chem. Rev. 2005, 105, 1563–1602.

    Article  CAS  Google Scholar 

  22. Lane, B. S.; Burgess, K. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide. Chem. Rev. 2003, 103, 2457–2474.

    Article  CAS  Google Scholar 

  23. Monnier, J. R. The direct epoxidation of higher olefins using molecular oxygen. Appl. Catal. A 2001, 221, 73–91.

    Article  CAS  Google Scholar 

  24. Dai, Y. M.; Chen, Z. J.; Guo, Y. L.; Lu, G. Z.; Zhao, Y. F.; Wang, H. F.; Hu, P. Significant enhancement of the selectivity of propylene epoxidation for propylene oxide: A molecular oxygen mechanism. Phys. Chem. Chem. Phys. 2017, 19, 25129–25139.

    Article  CAS  Google Scholar 

  25. Deubel, D. V.; Frenking, G.; Gisdakis, P.; Herrmann, W. A.; Rösch, N.; Sundermeyer, J. Olefin epoxidation with inorganic peroxides. Solutions to four long-standing controversies on the mechanism of oxygen transfer. Acc. Chem. Res. 2004, 37, 645–652.

    Article  CAS  Google Scholar 

  26. Ray, K.; Pfaff, F. F.; Wang, B.; Nam, W. Status of reactive non-heme metal-oxygen intermediates in chemical and enzymatic reactions. J. Am. Chem. Soc. 2014, 136, 13942–13958.

    Article  CAS  Google Scholar 

  27. Zhang, J. N.; Lei, Y. F.; Cao, S.; Hu, W. P.; Piao, L.; Chen, X. B. Photocatalytic hydrogen production from seawater under full solar spectrum without sacrificial reagents using TiO2 nanoparticles. Nano Res. 2022, 15, 2013–2022.

    Article  CAS  Google Scholar 

  28. Chen, D.; Yue, X. Y.; Li, X. L.; Bao, J.; Qiu, Q. Q.; Wu, X. J.; Zhang, X.; Zhou, Y. Freestanding double-layer MoO3/CNT@S membrane: A promising flexible cathode for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2020, 12, 2354–2361.

    Article  CAS  Google Scholar 

  29. Wang, C. X.; Mao, H. Y.; Wang, C. X.; Fu, S. H. Dispersibility and hydrophobicity analysis of titanium dioxide nanoparticles grafted with silane coupling agent. Ind. Eng. Chem. Res. 2011, 50, 11930–11934.

    Article  CAS  Google Scholar 

  30. Boruah, J. J.; Kalita, D.; Das, S. P.; Paul, S.; Islam, N. S. Polymer-anchored peroxo compounds of vanadium(V) and molybdenum(VI): Synthesis, stability, and their activities with alkaline phosphatase and catalase. Inorg. Chem. 2011, 50, 8046–8062.

    Article  CAS  Google Scholar 

  31. Maiti, S. K.; Malik, K. M. A.; Gupta, S.; Chakraborty, S.; Ganguli, A. K.; Mukherjee, A. K.; Bhattacharyya, R. Oxo- and oxoperoxo-molybdenum(VI) complexes with aryl hydroxamates: Synthesis, structure, and catalytic uses in highly efficient, selective, and ecologically benign peroxidic epoxidation of olefins. Inorg. Chem. 2006, 45, 9843–9857.

    Article  CAS  Google Scholar 

  32. Lv, Y.; Yue, L.; Khan, I. M.; Zhou, Y.; Cao, W. B.; Niazi, S.; Wang, Z. P. Fabrication of magnetically recyclable yolk-shell Fe3O4@TiO2 nanosheet/Ag/g-C3N4 microspheres for enhanced photocatalytic degradation of organic pollutants. Nano Res. 2021, 14, 2363–2371.

    Article  CAS  Google Scholar 

  33. Chenakin, S.; Kruse, N. Combining XPS and ToF-SIMS for assessing the CO oxidation activity of Au/TiO2 catalysts. J. Catal. 2018, 358, 224–236.

    Article  CAS  Google Scholar 

  34. Wu, Y. X.; Liang, H. L.; Chen, X.; Chen, C.; Wang, X. Z.; Dai, C. Y.; Hu, L. M.; Chen, Y. F. Effect of preparation methods on denitration performance of V-Mo/TiO2 catalyst. J. Fuel Chem. Technol. 2020, 48, 189–196.

    Article  CAS  Google Scholar 

  35. Veiros, L. F.; Prazeres, Â.; Costa, P. J.; Romão, C. C.; Kühnd, F. E.; Calhorda, M. J. Olefin epoxidation with tert-butyl hydroperoxide catalyzed by MoO2X2L complexes: A DFT mechanistic study. Dalton Trans. 2006, 1383–1389.

  36. Al-Ajlouni, A.; Valente, A. A.; Nunes, C. D.; Pillinger, M.; Santos, A. M.; Zhao, J.; Romão, C. C.; Gonçalves, I. S.; Kühn, F. E. Kinetics of cyclooctene epoxidation with tert-butyl hydroperoxide in the presence of [MoO2X2L]-type catalysts (L = bidentate Lewis base). Eur. J. Inorg. Chem. 2005, 2005, 1716–1723.

    Article  Google Scholar 

  37. Ma, H. B.; Zhang, Y. F.; Zhu, L. H.; Majima, T.; Wang, N. Efficient activation of peroxymonosulfate on cobalt hydroxychloride nanoplates through hydrogen bond for degradation of tetrabromobisphenol A. Chem. Eng. J. 2021, 413, 127480.

    Article  CAS  Google Scholar 

  38. Xue, X. F.; Hanna, K.; Abdelmoula, M.; Deng, N. S. Adsorption and oxidation of PCP on the surface of magnetite: Kinetic experiments and spectroscopic investigations. Appl. Catal. B:Environ. 2009, 89, 432–440.

    Article  CAS  Google Scholar 

  39. Sharpless, K. B.; Townsend, J. M.; Williams, D. R. Mechanism of epoxidation of olefins by covalent peroxides of molybdenum(VI). J. Am. Chem. Soc. 1972, 94, 295–296.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program Nanotechnology Specific Project (No. 2020YFA0210900), the National Natural Science Foundation of China (Nos. 21908256, 21938001, and 21878344), Guangdong Provincial Key R&D Program (No. 2019B110206002), and the Fundamental Research Funds for the Central Universities, Sun Yatsen University (No. 2021qntd13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Can Xue or Hongbing Ji.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, C., Liu, H., Zhou, J. et al. High selective epoxidation of 2-methylpropene over a Mo-based oxametallacycle reinforced nano composite. Nano Res. 16, 209–218 (2023). https://doi.org/10.1007/s12274-022-4686-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4686-7

Keywords

Navigation