Skip to main content
Log in

Porous copper cluster-based MOF with strong cuprophilic interactions for highly selective electrocatalytic reduction of CO2 to CH4

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

It is well known that the low-valent Cu species are important catalytically active centers in the reduction of CO2 to hydrocarbon products. However, the Cu(I)-based catalysts are easily reduced during the electroreduction of CO2, which causes phase transformation of catalysts and leads to a decrease of intrinsic catalytic activity. Therefore, it is of great significance to synthesize Cu(I)-based catalysts with specific interactions that can keep the catalytically active Cu sites stable in the electrocatalytic process. Based on the above considerations, a hexanuclear Cu cluster with strong cuprophilic interactions has been designed and utilized as a secondary building unit (SBU) to construct a stable metal-organic framework (MOF) electrocatalyst (NNU-50). As expected, the NNU-50 has served as an effective electrocatalyst for the CO2-to-CH4 conversion by exhibiting a high Faradaic efficiency for CH4 (\({\rm{F}}{{\rm{E}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}\)) of 66.40% and a large current density of ∼ 400 mA·cm−2 at −1.0 V vs. reversible hydrogen electrode (RHE), which is one of the best catalytic performances among the stable MOF electrocatalysts until now. This work contributes more ideas for the design of stable and efficient MOF-based electrocatalysts for CO2 reduction reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Soest, H. L.; den Elzen, M. G. J.; van Vuuren, D. P. Net-zero emission targets for major emitting countries consistent with the Paris Agreement. Nat. Commun. 2021, 12, 2140.

    Article  CAS  Google Scholar 

  2. Wang, L. M.; Chen, W. L.; Zhang, D. D.; Du, Y. P.; Amal, R.; Qiao, S. Z.; Wu, J. B.; Yin, Z. Y. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 2019, 48, 5310–5349.

    Article  CAS  Google Scholar 

  3. Long, C.; Li, X.; Guo, J.; Shi, Y. N.; Liu, S. Q.; Tang, Z. Y. Electrochemical reduction of CO2 over heterogeneous catalysts in aqueous solution: Recent progress and perspectives. Small Methods 2019, 3, 1800369.

    Google Scholar 

  4. Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

    Article  CAS  Google Scholar 

  5. Li, L.; Li, X. D.; Sun, Y. F.; Xie, Y. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem. Soc. Rev. 2022, 51, 1234–1252.

    Article  CAS  Google Scholar 

  6. Liu, X. J.; Yang, H.; He, J.; Liu, H. X.; Song, L. D.; Li, L.; Luo, J. Highly active, durable ultrathin MoTe2 layers for the electroreduction of CO2 to CH4. Small 2018, 14, 1704049.

    Article  Google Scholar 

  7. Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423–3452.

    Article  CAS  Google Scholar 

  8. Liang, Z. Z.; Wang, H. Y.; Zheng, H. Q.; Zhang, W.; Cao, R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem. Soc. Rev. 2021, 50, 2540–2581.

    Article  CAS  Google Scholar 

  9. Wang, G. X.; Chen, J. X.; Ding, Y. C.; Cai, P. W.; Yi, L. C.; Li, Y.; Tu, C. Y.; Hou, Y.; Wen, Z. H.; Dai, L. M. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem. Soc. Rev. 2021, 50, 4993–5061.

    Article  CAS  Google Scholar 

  10. Jung, H.; Lee, S. Y.; Lee, C. W.; Cho, M. K.; Won, D. H.; Kim, C.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C-C coupling from CO2 reduction reaction. J. Am. Chem. Soc. 2019, 141, 4624–4633.

    Article  CAS  Google Scholar 

  11. Kim, J.; Choi, W.; Park, J. W.; Kim, C.; Kim, M.; Song, H. Branched copper oxide nanoparticles induce highly selective ethylene production by electrochemical carbon dioxide reduction. J. Am. Chem. Soc. 2019, 141, 6986–6994.

    Article  CAS  Google Scholar 

  12. Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986.

    Article  CAS  Google Scholar 

  13. Kim, D.; Kley, C. S.; Li, Y. F.; Yang, P. D. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2-C3 products. Proc. Natl. Acad. Sci. USA 2017, 114, 10560–10565.

    Article  CAS  Google Scholar 

  14. Weng, Z.; Jiang, J. B.; Wu, Y. S.; Wu, Z. S.; Guo, X. T.; Materna, K. L.; Liu, W.; Batista, V. S.; Brudvig, G. W.; Wang, H. L. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J. Am. Chem. Soc. 2016, 138, 8076–8079.

    Article  CAS  Google Scholar 

  15. Lu, Y. F.; Dong, L. Z.; Liu, J.; Yang, R. X.; Liu, J. J.; Zhang, Y.; Zhang, L.; Wang, Y. R.; Li, S. L.; Lan, Y. Q. Predesign of catalytically active sites via stable coordination cluster model system for electroreduction of CO2 to ethylene. Angew. Chem., Int. Ed. 2021, 60, 26210–26217.

    Article  CAS  Google Scholar 

  16. Wang, R.; Liu, J.; Huang, Q.; Dong, L. Z.; Li, S. L.; Lan, Y. Q. Partial coordination-perturbed Bi-copper sites for selective electroreduction of CO2 to hydrocarbons. Angew. Chem., Int. Ed. 2021, 60, 19829–19835.

    Article  CAS  Google Scholar 

  17. Wang, Y. R.; Liu, M.; Gao, G. K.; Yang, Y. L.; Yang, R. X.; Ding, H. M.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Implanting numerous hydrogen-bonding networks in a Cu-porphyrin-based nanosheet to boost CH4 selectivity in neutral-media CO2 electroreduction. Angew. Chem., Int. Ed. 2021, 60, 21952–21958.

    Article  CAS  Google Scholar 

  18. Wang, Y. R.; Ding, H. M.; Ma, X. Y.; Liu, M.; Yang, Y. L.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Imparting CO2 electroreduction auxiliary for integrated morphology tuning and performance boosting in a porphyrin-based covalent organic framework. Angew. Chem., Int. Ed. 2022, 61, e202114648.

    CAS  Google Scholar 

  19. Bushuyev, O. S.; De Luna, P.; Cao Thang, D.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it? Joule 2018, 2, 825–832.

    Article  CAS  Google Scholar 

  20. Liu, J. J.; Song, X. Y.; Zhang, T.; Liu, S. Y.; Wen, H. R.; Chen, L. 2D conductive metal-organic frameworks: An emerging platform for electrochemical energy storage. Angew. Chem., Int. Ed. 2021, 60, 5612–5624.

    Article  Google Scholar 

  21. Chen, S. H.; Su, Y. Q.; Deng, P. L.; Qi, R. J.; Zhu, J. X.; Chen, J. X.; Wang, Z. T.; Zhou, L.; Guo, X. P.; Xia, B. Y. Highly selective carbon dioxide electroreduction on structure-evolved copper perovskite oxide toward methane production. ACS Catal. 2020, 10, 4640–4646.

    Article  CAS  Google Scholar 

  22. Yi, J. D.; Xie, R. K.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem., Int. Ed. 2020, 59, 23641–23648.

    Article  CAS  Google Scholar 

  23. Zhu, H. L.; Huang, J. R.; Zhang, X. W.; Wang, C.; Huang, N. Y.; Liao, P. Q.; Chen, X. M. Highly efficient electroconversion of CO2 into CH4 by a metal-organic framework with trigonal pyramidal Cu(I)N3 active sites. ACS Catal. 2021, 11, 11786–11792.

    Article  CAS  Google Scholar 

  24. Zhuo, L. L.; Chen, P.; Zheng, K.; Zhang, X. W.; Wu, J. X.; Lin, D. Y.; Liu, S. Y.; Wang, Z. S.; Liu, J. Y.; Zhou, D. D. et al. Flexible cuprous triazolate frameworks as highly stable and efficient electrocatalysts for CO2 reduction with tunable C2H4/CH4 selectivity. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202204967.

  25. Zhang, L.; Li, X. X.; Lang, Z. L.; Liu, Y.; Liu, J.; Yuan, L.; Lu, W. Y.; Xia, Y. S.; Dong, L. Z.; Yuan, D. Q. et al. Enhanced cuprophilic interactions in crystalline catalysts facilitate the highly selective electroreduction of CO2 to CH4. J. Am. Chem. Soc. 2021, 143, 3808–3816.

    Article  CAS  Google Scholar 

  26. Harisomayajula, N. V. S.; Makovetskyi, S.; Tsai, Y. C. Cuprophilic Interactions in and between Molecular Entities. Chem.—Eur. J. 2019, 25, 8936–8954.

    Article  CAS  Google Scholar 

  27. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Article  Google Scholar 

  28. Zhou, J. W.; Li, R.; Fan, X. X.; Chen, Y. F.; Han, R. D.; Li, W.; Zheng, J.; Wang, B.; Li, X. G. Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries. Energy Environ. Sci. 2014, 7, 2715–2724.

    Article  CAS  Google Scholar 

  29. Qiu, Y. L.; Zhong, H. X.; Zhang, T. T.; Xu, W. B.; Su, P. P.; Li, X. F.; Zhang, H. M. Selective electrochemical reduction of carbon dioxide using Cu based metal organic framework for CO2 capture. ACS Appl. Mater. Interfaces 2018, 10, 2480–2489.

    Article  CAS  Google Scholar 

  30. Zhang, Y.; Dong, L. Z.; Li, S.; Huang, X.; Chang, J. N.; Wang, J. H.; Zhou, J.; Li, S. L.; Lan, Y. Q. Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4. Nat. Commun. 2021, 12, 6390.

    Article  CAS  Google Scholar 

  31. Nam, D. H.; Bushuyev, O. S.; Li, J.; De Luna, P.; Seifitokaldani, A.; Dinh, C. T.; García de Arquer, F. P.; Wang, Y. H.; Liang, Z. Q.; Proppe, A. H. et al. Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 2018, 140, 11378–11386.

    Article  CAS  Google Scholar 

  32. Qiu, X. F.; Zhu, H. L.; Huang, J. R.; Liao, P. Q.; Chen, X. M. Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites. J. Am. Chem. Soc. 2021, 143, 7242–7246.

    Article  CAS  Google Scholar 

  33. Yang, F.; Chen, A. L.; Deng, P. L.; Zhou, Y. Z.; Shahid, Z.; Liu, H. F.; Xia, B. Y. Highly efficient electroconversion of carbon dioxide into hydrocarbons by cathodized copper-organic frameworks. Chem. Sci. 2019, 10, 7975–7981.

    Article  CAS  Google Scholar 

  34. Liu, Y. Z.; Li, S.; Dai, L.; Li, J. N.; Lv, J. N.; Zhu, Z. J. J.; Yin, A. X.; Li, P. F.; Wang, B. The synthesis of Hexaazatrinaphthylene-based 2D conjugated copper metal-organic framework for highly selective and stable electroreduction of CO2 to methane. Angew. Chem., Int. Ed. 2021, 60, 16409–16415.

    Article  CAS  Google Scholar 

  35. Liu, Y. Y.; Zhu, H. L.; Zhao, Z. H.; Huang, N. Y.; Liao, P. Q.; Chen, X. M. Insight into the effect of the d-orbital energy of copper ions in metal-organic frameworks on the selectivity of electroreduction of CO2 to CH4. ACS Catal. 2022, 12, 2749–2755.

    Article  Google Scholar 

  36. Almeida, Q. A. R. Synthesis of highly substituted pyrroles using ultrasound in aqueous media. Green Chem. Lett. Rev. 2013, 6, 129–133.

    Article  CAS  Google Scholar 

  37. Boldog, I.; Rusanov, E. B.; Chernega, A. N.; Sieler, J.; Domasevitch, K. V. One- and two-dimensional coordination polymers of 3,3′,5,5′-tetramethyl-4,4′-bipyrazolyl, a new perspective crystal engineering module. Polyhedron 2001, 20, 887–897.

    Article  CAS  Google Scholar 

  38. He, J.; Yin, Y. G.; Wu, T.; Li, D.; Huang, X. C. Design and solvothermal synthesis of luminescent copper(I)-pyrazolate coordination oligomer and polymer frameworks. Chem. Commun. 2006, 27, 2845–2847.

    Article  Google Scholar 

  39. Bruker Inc. APEX2, SAINT and SADABS; Bruker AXS: Madison, USA, 2009.

    Google Scholar 

  40. Sheldrick, G. M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8.

    Google Scholar 

  41. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.

    Google Scholar 

  42. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2:A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.

    Article  CAS  Google Scholar 

  43. Spek, A. L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst. 2015, C71, 9–18.

    Google Scholar 

  44. Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586.

    Article  CAS  Google Scholar 

  45. Delgado-Friedrichs, O. The GAVROG Project [Online]. http://www.gavrog.org/ (accessed Mar 10, 2022).

  46. Wu, J. C. S.; Huang, C. W. In situ DRIFTS study of photocatalytic CO2 reduction under UV irradiation. Front. Chem. Eng. China 2010, 4, 120–126.

    Article  CAS  Google Scholar 

  47. Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 2019, 4, 690–699.

    Article  CAS  Google Scholar 

  48. Zhu, S. Q.; Li, T. H.; Cai, W. B.; Shao, M. H. CO2 electrochemical reduction As probed through infrared spectroscopy. ACS Energy Lett. 2019, 4, 682–689.

    Article  CAS  Google Scholar 

  49. Firet, N. J.; Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 2017, 7, 606–612.

    Article  CAS  Google Scholar 

  50. Pérez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu (100) electrodes. Angew. Chem., Int. Ed. 2017, 56, 3621–3624.

    Article  Google Scholar 

  51. Stevens, R. W.; Chuang, S. S. C. In situ IR study of transient CO2 reforming of CH4 over Rh/Al2O3. J. Phys. Chem. B 2004, 108, 696–703.

    Article  CAS  Google Scholar 

  52. Liu, Y. M.; Chen, S.; Quan, X.; Yu, H. T. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 2015, 137, 11631–11636.

    Article  CAS  Google Scholar 

  53. Ewing, G. E.; Thompson, W. E.; Pimentel, G. C. Infrared detection of the formyl radical HCO. J. Chem. Phys. 1960, 32, 927–932.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21871141, 21871142, 22071109, 22105080, and 92061101), the Excellent Youth Foundation of Jiangsu Natural Science Foundation (No. BK20211593), Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Qian Lan.

Electronic Supplementary Material

12274_2022_4681_MOESM1_ESM.pdf

Porous copper cluster-based MOF with strong cuprophilic interactions for highly selective electrocatalytic reduction of CO2 to CH4

checkCIF/PLATON report

Supplementary material, approximately 729 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, LZ., Lu, YF., Wang, R. et al. Porous copper cluster-based MOF with strong cuprophilic interactions for highly selective electrocatalytic reduction of CO2 to CH4. Nano Res. 15, 10185–10193 (2022). https://doi.org/10.1007/s12274-022-4681-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4681-z

Keywords

Navigation