Skip to main content
Log in

N,N-dimethyl fluorosulfonamide for suppressed aluminum corrosion in lithium bis(trifluoromethanesulfonyl)imide-based electrolytes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Effective passivation of aluminum (Al) current collector at high potentials (> 4.0 V vs. Li/Li+) is of essence for the long-term operation of lithium-based batteries. Unfortunately, the non-aqueous liquid electrolytes comprising lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and organic carbonates are corrosive toward Al current collector at high potentials (> 4.0 V vs. Li/Li+), despite their intriguing features (e.g., good chemical stability and high ionic conductivity). Herein, we propose the utilization of N,N-dimethyl fluorosulfonamide (DMFSA) as electrolyte solvent for suppressing Al corrosion in the LiTFSI-based electrolytes. It has been demonstrated that the electrolyte of 1.0 M LiTFSI-DMFSA shows decent ionic conductivities (1.76 mS·cm−1 at 25 °C) with good fluidities (2.44 cP at 25 °C). In particular, the replacement of organic carbonates (e.g., ethylene carbonate and ethyl methyl carbonate) with DMFSA leads to significant suppressed Al corrosion. Morphological and compositional characterizations utilizing scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) reveal that DMFSA favors the formation of insoluble species (i.e., aluminum fluoride (AlF3)) on the surface of Al electrode, which effectively inhibits continuous exposure of fresh Al surface to electrolyte during cycling. This work provides not only a deeper understanding on the Al corrosion in LiTFSI-based electrolyte but also an elegant path to stabilize the Al current collector at high potentials (> 4.0 V vs. Li/Li+), which may give an impetus into the development of lithium-based batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M. Intercalation electrodes. In Materials for Advanced Batteries; Murphy, D. W.; Broadhead, J.; Steele, B. C. H., Eds.; Springer: Boston, 1980; pp 145–161.

    Chapter  Google Scholar 

  2. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  CAS  Google Scholar 

  3. The Nobel prize in chemistry 2019 [Online]. https://www.nobelprize.org/prizes/chemistry/2019/summary/ (accessed May 19, 2022).

  4. Zhang, H.; Li, C. M.; Eshetu, G. G.; Laruelle, S.; Grugeon, S.; Zaghib, K.; Julien, C.; Mauger, A.; Guyomard, D.; Rojo, T. et al. From solid-solution electrodes and the rocking-chair concept to today’s batteries. Angew. Chem., Int. Ed. 2020, 59, 534–538.

    Article  CAS  Google Scholar 

  5. Hirata, K.; Morita, Y.; Kawase, T.; Sumida, Y. Electrochemical performance of an ethylene carbonate-free electrolyte based on lithium bis(fluorosulfonyl)imide and sulfolane. J. Power Sources 2018, 395, 163–170.

    Article  CAS  Google Scholar 

  6. Qiao, L. X.; Oteo, U.; Martinez-Ibañez, M.; Santiago, A.; Cid, R.; Sanchez-Diez, E.; Lobato, E.; Meabe, L.; Armand, M.; Zhang, H. Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries. Nat. Mater. 2022, 21, 455–462.

    Article  CAS  Google Scholar 

  7. Li, M.; Lu, J.; Chen, Z. W; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

    Article  Google Scholar 

  8. Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 1976, 192, 1126–1127.

    Article  CAS  Google Scholar 

  9. Song, Z. Y.; Zheng, L. P.; Cheng, P. F.; Wang, X. X.; Wu, H.; Ma, Q.; Liu, J. J.; Feng, W. F.; Nie, J.; Yu, H. L. et al. Taming the chemical instability of lithium hexafluorophosphate-based electrolyte with lithium fluorosulfonimide salts. J. Power Sources 2022, 526, 231105.

    Article  CAS  Google Scholar 

  10. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 < x < −1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789.

    Article  CAS  Google Scholar 

  11. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194.

    Article  CAS  Google Scholar 

  12. Kazunori, O.; Yokokawa M. Cycle performance of lithium ion rechargeable battery. In 10th International Seminar of Primary and Secondary Battery Technology Applications, Florida, USA, 1993.

  13. Myung, S. T.; Hitoshi, Y.; Sun, Y. K. Electrochemical behavior and passivation of current collectors in lithium-ion batteries. J. Mater. Chem. 2011, 21, 9891–9911.

    Article  CAS  Google Scholar 

  14. Zhu, P. C.; Gastol, D.; Marshall, J.; Sommerville, R.; Goodship, V.; Kendrick, E. A review of current collectors for lithium-ion batteries. J. Power Sources 2021, 485, 229321.

    Article  CAS  Google Scholar 

  15. Zhang, X. Y.; Devine, T. M. Factors that influence formation of AlF3 passive film on aluminum in Li-ion battery electrolytes with LiPF6. J. Electrochem. Soc. 2006, 153, B375.

    Article  CAS  Google Scholar 

  16. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503–11618.

    Article  CAS  Google Scholar 

  17. Zheng, L. P.; Zhang, H.; Cheng, P. F.; Ma, Q.; Liu, J. J.; Nie, J.; Feng, W. F.; Zhou, Z. B. Li[(FSO2)(n-C4F9SO2)N] versus LiPF6 for graphite/LiCoO2 lithium-ion cells at both room and elevated temperatures: A comprehensive understanding with chemical, electrochemical and XPS analysis. Electrochim. Acta 2016, 196, 169–188.

    Article  CAS  Google Scholar 

  18. Han, H. B.; Guo, J.; Zhang, D. J.; Feng, S. W.; Feng, W. F.; Nie, J.; Zhou, Z. B. Lithium (fluorosulfonyl) (nonafluorobutanesulfonyl) imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells. Electrochem. Commun. 2011, 13, 265–268.

    Article  CAS  Google Scholar 

  19. Zhang, H.; Han, H. B.; Cheng, X. R.; Zheng, L. P.; Cheng, P. F.; Feng, W. F.; Nie, J.; Armand, M.; Huang, X. J.; Zhou, Z. B. Lithium salt with a super-delocalized perfluorinated sulfonimide anion as conducting salt for lithium-ion cells: Physicochemical and electrochemical properties. J. Power Sources 2015, 296, 142–149.

    Article  CAS  Google Scholar 

  20. Krause, L. J.; Lamanna, W.; Summerfield, J.; Engle, M.; Korba, G.; Loch, R.; Atanasoski, R. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. J. Power Sources 1997, 68, 320–325.

    Article  CAS  Google Scholar 

  21. Mun, J.; Yim, T.; Choi, C. Y.; Ryu, J. H.; Kim, Y. G.; Oh, S. M. Linear-sweep thermammetry study on corrosion behavior of Al current collector in ionic liquid solvent. Electrochem. Solid-State Lett. 2010, 13, A109.

    Article  CAS  Google Scholar 

  22. Kita, F.; Sakata, H.; Sinomoto, S.; Kawakami, A.; Kamizori, H.; Sonoda, T.; Nagashima, H.; Nie, J.; Pavlenko, N. V.; Yagupolskii, Y. L. Characteristics of the electrolyte with fluoro organic lithium salts. J. Power Sources 2000, 90, 27–32.

    Article  CAS  Google Scholar 

  23. Michot, C.; Armand, M.; Sanchez, J. Y.; Choquette, Y.; Gauthier, M. Ionic conducting material having good anticorrosive properties. U. S. Patent 5, 916, 475, June 29, 1999.

  24. Han, H. B.; Zhou, S. S.; Zhang, D. J.; Feng, S. W.; Li, L. F.; Liu, K.; Feng, W. F.; Nie, J.; Li, H.; Huang, X. J. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties. J. Power Sources 2011, 196, 3623–3632.

    Article  CAS  Google Scholar 

  25. Yang, H.; Kwon, K.; Devine, T. M.; Evans, J. W. Aluminum corrosion in lithium batteries an investigation using the electrochemical quartz crystal microbalance. J. Electrochem. Soc. 2000, 147, 4399–4407.

    Article  CAS  Google Scholar 

  26. Zhang, Z. A.; Zhao, X. X.; Peng, B.; Lai, Y. Q.; Zhang, Z. Y.; Li, J. Mixed salts for lithium iron phosphate-based batteries operated at wide temperature range. Trans. Nonferrous Met. Soc. China 2015, 25, 2260–2265.

    Article  CAS  Google Scholar 

  27. Li, X.; Zheng, J. M.; Engelhard, M. H.; Mei, D. H.; Li, Q. Y.; Jiao, S. H.; Liu, N.; Zhao, W. G.; Zhang, J. G.; Xu, W. Effects of imide-orthoborate dual-salt mixtures in organic carbonate electrolytes on the stability of lithium metal batteries. ACS Appl. Mater. Interfaces 2018, 10, 2469–2479.

    Article  CAS  Google Scholar 

  28. Zhang, S. S.; Jow, T. R. Aluminum corrosion in electrolyte of Li-ion battery. J. Power Sources 2002, 109, 458–464.

    Article  CAS  Google Scholar 

  29. Louis, H.; Lee, Y. G.; Kim, K. M.; Cho, W. I.; Ko, J. M. Suppression of aluminum corrosion in lithium bis(trifluoromethanesulfonyl)imide-based electrolytes by the addition of fumed silica. Bull. Korean Chem. Soc. 2013, 34, 1795–1799.

    Article  CAS  Google Scholar 

  30. Oldiges, K.; Von Aspern, N.; Cekic-Laskovic, I.; Winter, M.; Brunklaus, G. Impact of trifluoromethylation of adiponitrile on aluminum dissolution behavior in dinitrile-based electrolytes. J. Electrochem. Soc. 2018, 165, A3773–A3781.

    Article  CAS  Google Scholar 

  31. Krämer, E.; Passerini, S.; Winter, M. Dependency of aluminum collector corrosion in lithium ion batteries on the electrolyte solvent. ECS Electrochem. Lett. 2012, 1, C9–C11.

    Article  Google Scholar 

  32. Pohl, B.; Grünebaum, M.; Drews, M.; Passerini, S.; Winter, M.; Wiemhöfer, H. D. Nitrile functionalized silyl ether with dissolved LiTFSI as new electrolyte solvent for lithium-ion batteries. Electrochim. Acta 2015, 180, 795–800.

    Article  CAS  Google Scholar 

  33. Cheng, P. F.; Zhang, H.; Ma, Q.; Feng, W. F.; Yu, H. L.; Huang, X. J.; Armand, M.; Zhou, Z. B. Highly salt-concentrated electrolyte comprising lithium bis(fluorosulfonyl)imide and 1,3-dioxolane-based ether solvents for 4-V-class rechargeable lithium metal cell. Electrochim. Acta 2020, 363, 137198.

    Article  CAS  Google Scholar 

  34. Abouimrane, A.; Belharouak, I.; Amine, K. Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochem. Commun. 2009, 11, 1073–1076.

    Article  CAS  Google Scholar 

  35. Xu, K.; Angell, C. A. Sulfone-based electrolytes for lithium-ion batteries. J. Electrochem. Soc. 2002, 149, A920.

    Article  CAS  Google Scholar 

  36. Peng, C. X.; Yang, L.; Wang, B. F.; Zhang, Z. X.; Li, N. Electrochemical behavior of aluminum foil in 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids electrolytes. Chin. Sci. Bull. 2006, 51, 2824–2830.

    Article  CAS  Google Scholar 

  37. Cha, E. H.; Mun, J. Y.; Cho, E. R.; Yim, T. E.; Kim, Y. G.; Oh, S. M.; Lim, S. A.; Lim, J. W. The corrosion study of Al current collector in phosphonium ionic liquid as solvent for lithium ion battery. J. Korean Electrochem. Soc. 2011, 14, 152–156.

    Article  CAS  Google Scholar 

  38. Xue, W. J.; Shi, Z.; Huang, M. J.; Feng, S. T.; Wang, C.; Wang, F.; Lopez, J.; Qiao, B.; Xu, G. Y.; Zhang, W. X. et al. FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries. Energy Environ. Sci. 2020, 13, 212–220.

    Article  CAS  Google Scholar 

  39. Song, Z. Y.; Wang, X. X.; Wu, H.; Feng, W. F.; Nie, J.; Yu, H. L.; Huang, X. J.; Armand, M.; Zhang, H.; Zhou, Z. B. Bis(fluorosulfonyl)imide-based electrolyte for rechargeable lithium batteries: A perspective. J. Power Sources Adv. 2022, 14, 100088.

    Article  CAS  Google Scholar 

  40. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

    Article  CAS  Google Scholar 

  41. Behrend, R. Ueber die einwirkung von sulfurylchlorid auf secundäre aminbasen. Justus Liebigs Ann. Chem. 1884, 222, 116–136.

    Article  Google Scholar 

  42. Heap, R.; Saunders, B. C. Esters containing phosphorus; substituted diaminofluorophosphine oxides. J. Chem. Soc. 1948, 17, 1313–1316.

    Article  CAS  Google Scholar 

  43. Armarego, W. L. F.; Chai, C. L. L. Purification of organic chemicals. In Purification of Laboratory Chemicals; Armarego, W. L. F.; Chai, C. L. L., Eds.; Elsevier: Amsterdam, 2009; pp 88–444.

    Chapter  Google Scholar 

  44. Schrader, G.; Bayer, O. Sulphamic acid fluorides. U. S. Patent 2, 130, 038, September 13, 1938.

  45. Havu, V.; Blum, V.; Havu, P.; Scheffler, M. Efficient integration for all-electron electronic structure calculation using numeric basis functions. J. Comput. Phys. 2009, 228, 8367–8379.

    Article  CAS  Google Scholar 

  46. Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.; Havu, V.; Ren, X. G.; Reuter, K.; Scheffler, M. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 2009, 180, 2175–2196.

    Article  CAS  Google Scholar 

  47. Becke, A. D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 1992, 96, 2155–2160.

    Article  CAS  Google Scholar 

  48. Lee, C.; Yang, W. T.; Parr, R. G. Development of the Colle—Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  49. Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17.

    Article  CAS  Google Scholar 

  50. Jones, G.; Bradshaw, B. C. The measurement of the conductance of electrolytes V. A redetermination of the conductance of standard potassium chloride solutions in absolute units. J. Am. Chem. Soc. 1933, 55, 1780–1800.

    Article  CAS  Google Scholar 

  51. Fu, S. T.; Liao, S. L.; Nie, J.; Zhou, Z. B. N,N-dialkyl perfluoroalkanesulfonamides: Synthesis, characterization and properties. J. Fluorine Chem. 2013, 147, 56–64.

    Article  CAS  Google Scholar 

  52. Choquette, Y.; Brisard, G.; Parent, M.; Brouillette, D.; Perron, G.; Desnoyers J. E.; Armand, M.; Gravel, D.; Slougui, N. Sulfamides and glymes as aprotic solvents for lithium batteries. J. Electrochem. Soc. 1998, 145, 3500–3507.

    Article  CAS  Google Scholar 

  53. Shyamsunder, A.; Beichel, W.; Klose, P.; Pang, Q.; Scherer, H.; Hoffmann, A.; Murphy, G. K.; Krossing, I.; Nazar, L. F. Inhibiting polysulfide shuttle in lithium-sulfur batteries through low-ion-pairing salts and a triflamide solvent. Angew. Chem., Int. Ed. 2017, 56, 6192–6197.

    Article  CAS  Google Scholar 

  54. Feng, S. T.; Huang, M. J.; Lamb, J. R.; Zhang, W. X.; Tatara, R.; Zhang, Y. R.; Zhu, Y. G.; Perkinson, C. F.; Johnson, J. A.; Shao-Horn, Y. Molecular design of stable sulfamide- and sulfonamide-based electrolytes for aprotic Li-O2 batteries. Chem 2019, 5, 2630–2641.

    Article  CAS  Google Scholar 

  55. Zhang, H.; Arcelus, O.; Carrasco, J. Role of asymmetry in the physiochemical and electrochemical behaviors of perfluorinated sulfonimide anions for lithium batteries: A DFT study. Electrochim. Acta 2018, 280, 290–299.

    Article  CAS  Google Scholar 

  56. Shainyan, B. A.; Chipanina, N. N.; Oznobikhina, L. P. The basicity of sulfonamides and carboxamides. Theoretical and experimental analysis and effect of fluorinated substituent. J. Phys. Org. Chem. 2012, 25, 738–747.

    Article  CAS  Google Scholar 

  57. Liu, K.; Zhou, Y. X.; Han, H. B.; Zhou, S. S.; Feng, W. F.; Nie, J.; Li, H.; Huang, X. J.; Armand, M.; Zhou, Z. B. Ionic liquids based on (fluorosulfonyl)(pentafluoroethanesulfonyl)imide with various oniums. Electrochim. Acta 2010, 55, 7145–7151.

    Article  CAS  Google Scholar 

  58. Sekhar, B. C.; Hachicha, R.; Maffre, M.; Bodin, C.; Le Vot, S.; Favier, F.; Fontaine, O. Evaluation of the properties of an electrolyte based on formamide and LiTFSI for electrochemical capacitors. J. Electrochem. Soc. 2020, 167, 110508.

    Article  CAS  Google Scholar 

  59. Wang, Z. Q.; Hofmann, A.; Hanemann, T. Low-flammable electrolytes with fluoroethylene carbonate based solvent mixtures and lithium bis(trifluoromethanesulfonyl)imide for lithium-ion batteries. Electrochim. Acta 2019, 298, 960–972.

    Article  CAS  Google Scholar 

  60. Ue, M. Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ-butyrolactone. J. Electrochem. Soc. 1994, 141, 3336–3342.

    Article  CAS  Google Scholar 

  61. Fox, T. G. Jr.; Flory, P. J. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys. 1950, 21, 581–591.

    Article  CAS  Google Scholar 

  62. Zhou, Z. B.; Matsumoto, H.; Tatsumi, K. Structure and properties of new ionic liquids based on alkyl- and alkenyltrifluoroborates. ChemPhysChem 2005, 6, 1324–1332.

    Article  CAS  Google Scholar 

  63. Linert, W.; Camard, A.; Armand, M.; Michot, C. Anions of low Lewis basicity for ionic solid state electrolytes. Coord. Chem. Rev. 2002, 226, 137–141.

    Article  CAS  Google Scholar 

  64. Cataldo, F. A revision of the Gutmann donor numbers of a series of phosphoramides including TEPA. Eur. Chem. Bull. 2015, 4, 92–97.

    Google Scholar 

  65. Walden, P. Über organische Lösungs- und Ionisierungsmith]III. Teil: Innere Reibung und deren Zusammenhang mit dem Leitvermögen. Z. Phys. Chem. 1906, 55U, 207–249.

    Article  Google Scholar 

  66. Yoshizawa, M.; Xu, W.; Angell, C. A. Ionic liquids by proton transfer: Vapor pressure, conductivity, and the relevance of ∆pKa from aqueous solutions. J. Am. Chem. Soc. 2003, 125, 15411–15419.

    Article  CAS  Google Scholar 

  67. MacFarlane, D. R.; Forsyth, M.; Izgorodina, E. I.; Abbott, A. P.; Annat, G.; Fraser, K. On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 2009, 11, 4962–4967.

    Article  CAS  Google Scholar 

  68. Wang, X. X.; Song, Z. Y.; Wu, H.; Nie, J.; Feng, W. F.; Yu, H. L.; Huang, X. J.; Armand, M.; Zhou, Z. B.; Zhang, H. Unprecedented impact of main chain on comb polymer electrolytes performances. ChemElectroChem 2022, 9, e202101590.

    CAS  Google Scholar 

  69. Evans, D. H.; O’Connell, K. M.; Petersen, R. A.; Kelly, M. J. Cyclic voltammetry. J. Chem. Educ. 1983, 60, 290–292.

    Article  CAS  Google Scholar 

  70. Cho, K.; Baek, J.; Balamurugan, C.; Im, H.; Kim, H. J. Corrosion study of nickel-coated copper and chromate-coated aluminum for corrosion-resistant lithium-ion battery lead-tab. J. Ind. Eng. Chem. 2022, 106, 537–545.

    Article  CAS  Google Scholar 

  71. Piao, N.; Wang, L.; Anwar, T.; Feng, X. N.; Sheng, S. E.; Tian, G. Y.; Wang, J. L.; Tang, Y. P.; He, X. M. Corrosion resistance mechanism of chromate conversion coated aluminium current collector in lithium-ion batteries. Corros. Sci. 2019, 158, 108100.

    Article  CAS  Google Scholar 

  72. Li, X.; Deng, S. X.; Banis, M. N.; Doyle-Davis, K.; Zhang, D. X.; Zhang, T. Y.; Yang, J.; Divigalpitiya, R.; Brandys, F.; Li, R. Y. et al. Suppressing corrosion of aluminum foils via highly conductive graphene-like carbon coating in high-performance lithium-based batteries. ACS Appl. Mater. Interfaces 2019, 11, 32826–32832.

    Article  CAS  Google Scholar 

  73. Krummacher, J.; Hess, L. H.; Balducci, A. Al(TFSI)3 in acetonitrile as electrolytes for electrochemical double layer capacitors. J. Electrochem. Soc. 2019, 166, A1763–A1768.

    Article  CAS  Google Scholar 

  74. Liang, F. X.; Yu, J. L.; Chen, J. H.; Wang, D.; Lin, C. D.; Zhu, C. Z.; Wang, M. L.; Dong, L.; Li, C. H. A novel boron-based ionic liquid electrolyte for high voltage lithium-ion batteries with outstanding cycling stability. Electrochim. Acta 2018, 283, 111–120.

    Article  CAS  Google Scholar 

  75. Li, F.; Liu, J. D.; He, J.; Hou, Y. Y.; Wang, H. P.; Wu, D. X.; Huang, J. D.; Ma, J. M. Additive-assisted hydrophobic Li+-solvated structure for stabilizing dual electrode electrolyte interphases through suppressing LiPF6 hydrolysis. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202205091.

  76. Huang, J. D.; Liu, J. D.; He, J.; Wu, M. G.; Qi, S. H.; Wang, H. P.; Li, F.; Ma, J. M. Optimizing electrode/electrolyte interphases and Li-ion flux/solvation for lithium-metal batteries with qua-functional heptafluorobutyric anhydride. Angew. Chem., Int. Ed. 2021, 60, 20717–20722.

    Article  CAS  Google Scholar 

  77. Meister, P.; Qi, X.; Kloepsch, R.; Krämer, E.; Streipert, B.; Winter, M.; Placke, T. Anodic behavior of the aluminum current collector in imide-based electrolytes: Influence of solvent, operating temperature, and native oxide-layer thickness. ChemSusChem 2017, 10, 804–814.

    Article  CAS  Google Scholar 

  78. Krummacher, J.; Balducci, A. Al(TFSI)3 as a conducting salt for high-voltage electrochemical double-layer capacitors. Chem. Mater. 2018, 30, 4857–4863.

    Article  CAS  Google Scholar 

  79. Lin, M.; Yang, X. R.; Zheng, X.; Zheng, J. M.; Cheng, J.; Yang, Y. Initial stages of oxidation reactions of ethylene carbonate and fluoroethylene carbonate on LixCoO2 surfaces: A DFT study. J. Electrochem. Soc. 2021, 168, 050505.

    Article  CAS  Google Scholar 

  80. Yang, S. D.; Fan, Q. L.; Shi, Z. C.; Liu, L. Y.; Liu, J.; Ke, X.; Liu, J. P.; Hong, C. Y.; Yang, Y.; Guo, Z. P. Superior stability secured by a four-phase cathode electrolyte interface on a Ni-rich cathode for lithium ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 36742–36750.

    Article  CAS  Google Scholar 

  81. Zou, Y.; Cheng, Y.; Lin, J. D.; Xiao, Y. K.; Ren, F. C.; Zhou, K.; Wang, M. S.; Wu, D. Y.; Yang, Y.; Zheng, J. M. Boosting high voltage cycling of LiCoO2 cathode via triisopropanolamine cyclic borate electrolyte additive. J. Power Sources 2022, 532, 231372.

    Article  CAS  Google Scholar 

  82. Kim, J. M.; Zhang, X. H.; Zhang, J. G.; Manthiram, A.; Meng, Y. S.; Xu, W. A review on the stability and surface modification of layered transition-metal oxide cathodes. Mater. Today 2021, 46, 155–182.

    Article  CAS  Google Scholar 

  83. Yu, X. W.; Yu, W. A.; Manthiram, A. Advances and prospects of high-voltage spinel cathodes for lithium-based batteries. Small Methods 2021, 5, 2001196.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities, HUST (No. 52020kfyXJJS09). The authors appreciate Molecular Simulations from First Principles (MS1P) eV. for kindly supplying the FHI-aims (Fritz Haber Institute ab initio molecular simulations) package as a generous gift.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhibin Zhou or Heng Zhang.

Electronic Supplementary Material

12274_2022_4669_MOESM1_ESM.pdf

N,N-dimethyl fluorosulfonamide for suppressed aluminum corrosion in lithium bis(trifluoromethanesulfonyl)imide-based electrolytes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Song, Z., Wang, X. et al. N,N-dimethyl fluorosulfonamide for suppressed aluminum corrosion in lithium bis(trifluoromethanesulfonyl)imide-based electrolytes. Nano Res. 16, 8269–8280 (2023). https://doi.org/10.1007/s12274-022-4669-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4669-8

Keywords

Navigation