Skip to main content
Log in

Platinum nickel alloy-MXene catalyst with inverse opal structure for enhanced hydrogen evolution in both acidic and alkaline solutions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of an efficient Pt-based electrocatalyst in acidic and alkaline electrolytes is of great significance to the field of electrocatalytic hydrogen evolution. Herein, we report a strategy for in situ growth of Pt3Ni truncated octahedrons on Ti3C2Tx nanosheets and then obtain an ordered porous catalyst via a template method. Meanwhile, we use the finite element calculation to clarify the relationship between the component structure and performance and find that the performance of the spherical shell microstructure catalyst is higher than that of the disc structure catalyst, which is also verified by experiments. The experimental analysis shows that the ordered porous catalyst is conducive to enhancing electrocatalytic hydrogen evolution activity in acidic and alkaline electrolytes. In an acidic solution, the overpotential is 25 mV (10 mA·cm−2), and the Tafel slope is 22.86 mV·dec−1. In an alkaline solution, the overpotential is 44.1 mV (10 mA·cm−2), and the Tafel slope is 39.06 mV·dec−1. The synergistic coupling between Ti3C2Tx and Pt3Ni nanoparticles improves the stability of the catalyst. The in situ growth strategy and design of microstructure with its correlation with catalytic performance represent critical steps toward the rational synthesis of catalysts with excellent catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi, Y.; Ma, Z. R.; Xiao, Y. Y.; Yin, Y. C.; Huang, W. M.; Huang, Z. C.; Zheng, Y. Z.; Mu, F. Y.; Huang, R.; Shi, G. Y. et al. Electronic metal—support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 2021, 12, 3021.

    Article  Google Scholar 

  2. Huang, J. F.; Zeng, R. H.; Chen, J. L. Thermostable carbon-supported subnanometer-sized (< 1 nm) Pt clusters for the hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 21972–21980.

    Article  CAS  Google Scholar 

  3. Lin, Z. P.; Xiao, B. B.; Wang, Z. P.; Tao, W. Y.; Shen, S. J.; Huang, L. G.; Zhang, J. T.; Meng, F. Q.; Zhang, Q. H.; Gu, L. et al. Planar-coordination PdSe2 nanosheets as highly active electrocatalyst for hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2102321.

    Article  CAS  Google Scholar 

  4. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  5. Hu, K. L.; Ohto, T.; Nagata, Y.; Wakisaka, M.; Aoki, Y.; Fujita, J. I.; Ito, Y. Catalytic activity of graphene-covered non-noble metals governed by proton penetration in electrochemical hydrogen evolution reaction. Nat. Commun. 2021, 12, 203.

    Article  CAS  Google Scholar 

  6. Song, J. D.; Jin, Y. Q.; Zhang, L.; Dong, P. Y.; Li, J. W.; Xie, F. Y.; Zhang, H.; Chen, J.; Jin, Y. S.; Meng, H. et al. Phase-separated Mo-Ni alloy for hydrogen oxidation and evolution reactions with high activity and enhanced stability. Adv. Energy Mater. 2021, 11, 2003511.

    Article  CAS  Google Scholar 

  7. Cheng, H.; Diao, Y. W.; Liu, Q.; Wei, L. L.; Li, X. H.; Chen, J. H.; Wang, F. X. Di-nuclear metal synergistic catalysis: Ni2Mo6S6O2/MoS2 two-dimensional nanosheets for hydrogen evolution reaction. Chem. Eng. J. 2022, 428, 131084.

    Article  CAS  Google Scholar 

  8. Chen, J. D.; Qin, M. K.; Ma, S. X.; Fan, R. X.; Zheng, X. Z.; Mao, S. J.; Chen, C. H.; Wang, Y. Rational construction of Pt/PtTex interface with optimal intermediate adsorption energy for efficient hydrogen evolution reaction. Appl. Catal. B:Environ. 2021, 299, 120640.

    Article  CAS  Google Scholar 

  9. Yuan, Y. Y.; Li, H. S.; Wang, L. G.; Zhang, L.; Shi, D. E.; Hong, Y. X.; Sun, J. L. Achieving highly efficient catalysts for hydrogen evolution reaction by electronic state modification of platinum on versatile Ti3C2Tx (MXene). ACS Sustainable Chem. Eng. 2019, 7, 4266–4273.

    Article  CAS  Google Scholar 

  10. Sultan, S.; Tiwari, J. N.; Singh, A. N.; Zhumagali, S.; Ha, M. R.; Myung, C. W.; Thangavel, P.; Kim, K. S. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 9, 1900624.

    Article  Google Scholar 

  11. Cao, Z. M.; Chen, Q. L.; Zhang, J. W.; Li, H. Q.; Jiang, Y. Q.; Shen, S. Y.; Fu, G.; Lu, B. A.; Xie, Z. X.; Zheng, L. S. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat. Commun. 2017, 8, 15131.

    Article  Google Scholar 

  12. Bao, M. J.; Amiinu, I. S.; Peng, T.; Li, W. Q.; Liu, S. J.; Wang, Z.; Pu, Z. H.; He, D. P.; Xiong, Y. L.; Mu, S. C. Surface evolution of PtCu alloy shell over Pd nanocrystals leads to superior hydrogen evolution and oxygen reduction reactions. ACS Energy Lett. 2018, 3, 940–945.

    Article  CAS  Google Scholar 

  13. Zhang, Q.; Kuang, Y.; Li, Y. P.; Jiang, M.; Cai, Z.; Pang, Y. C.; Chang, Z.; Sun, X. M. Synthesis and performance optimization of ultrathin two-dimensional CoFePt alloy materials via in situ topotactic conversion for the hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 9517–9522.

    Article  CAS  Google Scholar 

  14. Guo, F.; Zou, Z. J.; Zhang, Z. Y.; Zeng, T.; Tan, Y. Y.; Chen, R. Z.; Wu, W.; Cheng, N. C.; Sun, X. L. Confined sub-nanometer PtCo clusters as a highly efficient and robust electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 5468–5474.

    Article  CAS  Google Scholar 

  15. Chao, T. T.; Luo, X.; Chen, W. X.; Jiang, B.; Ge, J. J.; Lin, Y.; Wu, G.; Wang, X. Q.; Hu, Y. M.; Zhuang, Z. B. et al. Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16047–16051.

    Article  CAS  Google Scholar 

  16. Yin, J.; Fan, Q. H.; Li, Y. X.; Cheng, F. Y.; Zhou, P. P.; Xi, P. X.; Sun, S. H. Ni-C-N nanosheets as catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 14546–14549.

    Article  CAS  Google Scholar 

  17. Zhang, C.; Liang, X.; Xu, R. N.; Dai, C. N.; Wu, B.; Yu, G. Q.; Chen, B. H.; Wang, X. L.; Liu, N. H2in situ inducing strategy on Pt surface segregation over low Pt doped PtNi5 nanoalloy with superhigh alkaline HER activity. Adv. Funct. Mater. 2021, 31, 2008298.

    Article  CAS  Google Scholar 

  18. Li, M. F.; Duanmu, K.; Wan, C. Z.; Cheng, T.; Zhang, L.; Dai, S.; Chen, W. X.; Zhao, Z. P.; Li, P.; Fei, H. L. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2019, 2, 495–503.

    Article  CAS  Google Scholar 

  19. Yang, J. T.; Ning, G. Q.; Yu, L.; Wang, Y.; Luan, C. L.; Fan, A. X.; Zhang, X.; Liu, Y. J.; Dong, Y.; Dai, X. P. Morphology controllable synthesis of PtNi concave nanocubes enclosed by high-index facets supported on porous graphene for enhanced hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 17790–17796.

    Article  CAS  Google Scholar 

  20. Liu, W. P.; Ji, J.; Yan, X. C.; Liu, W. B.; Huang, Y. C.; Wang, K.; Jin, P.; Yao, X. D.; Jiang, J. Z. A cascade surface immobilization strategy to access high-density and closely distanced atomic Pt sites for enhancing alkaline hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 5255–5262.

    Article  CAS  Google Scholar 

  21. Zhou, M.; Bao, S. J.; Bard, A. J. Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles. J. Am. Chem. Soc. 2019, 141, 7327–7332.

    Article  CAS  Google Scholar 

  22. Zhou, K. L.; Wang, C. C.; Wang, Z. L.; Han, C. B.; Zhang, Q. Q.; Ke, X. X.; Liu, J. B.; Wang, H. Seamlessly conductive Co(OH)2 tailored atomically dispersed Pt electrocatalyst with a hierarchical nanostructure for an efficient hydrogen evolution reaction. Energy Environ. Sci. 2020, 13, 3082–3092.

    Article  CAS  Google Scholar 

  23. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Article  CAS  Google Scholar 

  24. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    Article  CAS  Google Scholar 

  25. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  26. Wang, Y.; Nian, Y.; Biswas, A. N.; Li, W.; Han, Y.; Chen, J. G. Challenges and opportunities in utilizing MXenes of carbides and nitrides as electrocatalysts. Adv. Energy Mater. 2021, 11, 2002967.

    Article  CAS  Google Scholar 

  27. Feng, Y. H.; Ma, R. G.; Wang, M. M.; Wang, J.; Sun, T. M.; Hu, L. P.; Zhu, J. L.; Tang, Y. F.; Wang, J. C. Crystallinity effect of NiFe LDH on the growth of Pt nanoparticles and hydrogen evolution performance. J. Phys. Chem. Lett. 2021, 12, 7221–7228.

    Article  CAS  Google Scholar 

  28. Pei, L. Y.; Qiao, H. H.; Chen, B.; Zhu, X. D.; Davis, R. A.; Zhu, K. Y.; Xia, L.; Dong, P.; Ye, M. X.; Shen, J. F. Pt edge-doped MoS2: Activating the active sites for maximized hydrogen evolution reaction performance. Small 2021, 17, 2104245.

    Article  CAS  Google Scholar 

  29. Kang, Z. M.; Khan, M. A.; Gong, Y. M.; Javed, R.; Xu, Y.; Ye, D. X.; Zhao, H. B.; Zhang, J. J. Recent progress of MXenes and MXene-based nanomaterials for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 6089–6108.

    Article  CAS  Google Scholar 

  30. Hantanasirisakul, K.; Gogotsi, Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 2018, 30, 1804779.

    Article  Google Scholar 

  31. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

    Article  CAS  Google Scholar 

  32. Lu, C. X.; Li, A. R.; Zhai, T. F.; Niu, C. R.; Duan, H. P.; Guo, L.; Zhou, W. Interface design based on Ti3C2 MXene atomic layers of advanced battery-type material for supercapacitors. Energy Storage Mater. 2020, 26, 472–482.

    Article  Google Scholar 

  33. Cui, C.; Cheng, R. F.; Zhang, H.; Zhang, C.; Ma, Y. H.; Shi, C.; Fan, B. B.; Wang, H. L.; Wang, X. H. Ultrastable MXene@Pt/SWCNTs’ nanocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2020, 30, 2000693.

    Article  CAS  Google Scholar 

  34. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  35. Wu, Z. T.; Shang, T. X.; Deng, Y. Q.; Tao, Y.; Yang, Q. H. The assembly of MXenes from 2D to 3D. Adv. Sci. 2020, 7, 1903077.

    Article  CAS  Google Scholar 

  36. Wang, K. L.; Zheng, B. C.; Mackinder, M.; Baule, N.; Qiao, H.; Jin, H.; Schuelke, T.; Fan, Q. H. Graphene wrapped MXene via plasma exfoliation for all-solid-state flexible supercapacitors. Energy Storage Mater. 2019, 20, 299–306.

    Article  Google Scholar 

  37. Tian, W. Q.; VahidMohammadi, A.; Wang, Z.; Ouyang, L. Q.; Beidaghi, M.; Hamedi, M. M. Layer-by-layer self-assembly of pillared two-dimensional multilayers. Nat. Commun. 2019, 10, 2558.

    Article  Google Scholar 

  38. Xia, Y.; Mathis, T. S.; Zhao, M. Q.; Anasori, B.; Dang, A. L.; Zhou, Z. H.; Cho, H.; Gogotsi, Y.; Yang, S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 2018, 557, 409–412.

    Article  CAS  Google Scholar 

  39. Shang, T. X.; Lin, Z. F.; Qi, C. S.; Liu, X. C.; Li, P.; Tao, Y.; Wu, Z. T.; Li, D. W.; Simon, P.; Yang, Q. H. 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 2019, 29, 1903960.

    Article  Google Scholar 

  40. Shi, S. W.; Qian, B. Q.; Wu, X. Y.; Sun, H. L.; Wang, H. Q.; Zhang, H. B.; Yu, Z. Z.; Russell, T. P. Self-assembly of MXene-surfactants at liquid—liquid interfaces: From structured liquids to 3D aerogels. Angew. Chem., Int. Ed. 2019, 58, 18171–18176.

    Article  CAS  Google Scholar 

  41. Zhang, P.; Zhu, Q. Z.; Soomro, R. A.; He, S. Y.; Sun, N.; Qiao, N.; Xu, B. In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors. Adv. Funct. Mater. 2020, 30, 2000922.

    Article  CAS  Google Scholar 

  42. Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 2014, 516, 78–81.

    Article  CAS  Google Scholar 

  43. Li, L. X.; Sun, W. J.; Zhang, H. Y.; Wei, J. L.; Wang, S. X.; He, J. H.; Li, N. J.; Xu, Q. F.; Chen, D. Y.; Li, H. et al. Highly efficient and selective nitrate electroreduction to ammonia catalyzed by molecular copper catalyst@Ti3C2Tx MXene. J. Mater. Chem. A 2021, 9, 21771–21778.

    Article  CAS  Google Scholar 

  44. Li, C.; Zhang, L.; Zhang, Y.; Zhou, Y.; Sun, J. W.; Ouyang, X. P.; Wang, X.; Zhu, J. W.; Fu, Y. S. PtRu alloy nanoparticles embedded on C2N nanosheets for efficient hydrogen evolution reaction in both acidic and alkaline solutions. Chem. Eng. J. 2022, 428, 131085.

    Article  CAS  Google Scholar 

  45. Chen, X. L.; Zhang, H. X.; Huang, X. Y.; Feng, J. J.; Han, D. M.; Zhang, L.; Chen, J. R.; Wang, A. J. Facile solvothermal fabrication of Pt47Ni53 nanopolyhedrons for greatly boosting electrocatalytic performances for oxygen reduction and hydrogen evolution. J. Colloid Interface Sci. 2018, 525, 260–268.

    Article  CAS  Google Scholar 

  46. Leteba, G. M.; Wang, Y. C.; Slater, T. J. A.; Cai, R. S.; Byrne, C.; Race, C. P.; Mitchell, D. R. G.; Levecque, P. B. J.; Young, N. P.; Holmes, S. M. et al. Oleylamine aging of PtNi nanoparticles giving enhanced functionality for the oxygen reduction reaction. Nano Lett. 2021, 21, 3989–3996.

    Article  CAS  Google Scholar 

  47. Yang, T.; Wang, Y. H.; Wei, W. X.; Ding, X. R.; He, M. S.; Yu, T. T.; Zhao, H.; Zhang, D. G. Synthesis of octahedral Pt-Ni-Ir yolk—shell nanoparticles and their catalysis in oxygen reduction and methanol oxidization under both acidic and alkaline conditions. Nanoscale 2019, 11, 23206–23216.

    Article  CAS  Google Scholar 

  48. Jiang, K.; Liu, B. Y.; Luo, M.; Ning, S. C.; Peng, M.; Zhao, Y.; Lu, Y. R.; Chan, T. S.; de Groot, F. M. F.; Tan, Y. W. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 2019, 10, 1743.

    Article  Google Scholar 

  49. Li, S. F.; Li, M. X.; Ni, Y. H. Grass-like Ni/Cu nanosheet arrays grown on copper foam as efficient and non-precious catalyst for hydrogen evolution reaction. Appl. Catal. B:Environ. 2020, 268, 118392.

    Article  CAS  Google Scholar 

  50. Lu, S. Q.; Zhuang, Z. B. Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 2017, 139, 5156–5163.

    Article  CAS  Google Scholar 

  51. Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Ni, B. J. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J. Mater. Chem. A 2019, 7, 14971–15005.

    Article  CAS  Google Scholar 

  52. Yuan, W. Y.; Cheng, L. F.; An, Y. R.; Wu, H.; Yao, N.; Fan, X. L.; Guo, X. H. MXene nanofibers as highly active catalysts for hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2018, 6, 8976–8982.

    Article  CAS  Google Scholar 

  53. Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.

    Article  CAS  Google Scholar 

  54. Zhang, X. B.; Shao, B. Y.; Sun, Z. M.; Gao, Z.; Qin, Y.; Zhang, C.; Cui, F. M.; Yang, X. J. Platinum nanoparticle-deposited Ti3C2Tx MXene for hydrogen evolution reaction. Ind. Eng. Chem. Res. 2020, 59, 1822–1828.

    Article  CAS  Google Scholar 

  55. Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

    Article  Google Scholar 

  56. Ding, T.; Wang, Z. Y.; Zhang, L.; Wang, C. D.; Sun, Y.; Yang, Q. A highly active and durable CuPdPt/C electrocatalyst for an efficient hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 15309–15315.

    Article  CAS  Google Scholar 

  57. Jiang, B. B.; Liao, F.; Sun, Y. Y.; Cheng, Y. F.; Shao, M. W. Pt nanocrystals on nitrogen-doped graphene for the hydrogen evolution reaction using Si nanowires as a sacrificial template. Nanoscale 2017, 9, 10138–10144.

    Article  CAS  Google Scholar 

  58. Wang, L.; Zhu, Y. H.; Zeng, Z. H.; Lin, C.; Giroux, M.; Jiang, L.; Han, Y.; Greeley, J.; Wang, C.; Jin, J. Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water. Nano Energy 2017, 31, 456–461.

    Article  Google Scholar 

  59. Feng, J. X.; Ding, L. X.; Ye, S. H.; He, X. J.; Xu, H.; Tong, Y. X.; Li, G. R. Co(OH)2@PANI hybrid nanosheets with 3D networks as high-performance electrocatalysts for hydrogen evolution reaction. Adv. Mater. 2015, 27, 7051–7057.

    Article  CAS  Google Scholar 

  60. Wang, Y.; Zhuo, H. Y.; Zhang, X.; Dai, X. P.; Yu, K. M.; Luan, C. L.; Yu, L.; Xiao, Y.; Li, J.; Wang, M. L. et al. Synergistic effect between undercoordinated platinum atoms and defective nickel hydroxide on enhanced hydrogen evolution reaction in alkaline solution. Nano Energy 2018, 48, 590–599.

    Article  CAS  Google Scholar 

  61. Shen, L. F.; Lu, B. A.; Qu, X. M.; Ye, J. Y.; Zhang, J. M.; Yin, S. H.; Wu, Q. H.; Wang, R. X.; Shen, S. Y.; Sheng, T. et al. Does the oxophilic effect serve the same role for hydrogen evolution/oxidation reaction in alkaline media? Nano Energy 2019, 62, 601–609.

    Article  CAS  Google Scholar 

  62. Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046–9050.

    Article  CAS  Google Scholar 

  63. Lai, F. L.; Zong, W.; He, G. J.; Xu, Y.; Huang, H. W.; Weng, B.; Rao, D. W.; Martens, J. A.; Hofkens, J.; Parkin, I. P. et al. N2 electroreduction to NH3 by selenium vacancy-rich ReSe2 catalysis at an abrupt interface. Angew. Chem, Int. Ed. 2020, 59, 13320–13327.

    Article  CAS  Google Scholar 

  64. Zhang, Q. H.; Zhu, Z. J.; Liu, P.; Zhang, J. Q.; Cao, F. H. Corrosion electrochemical kinetic study of copper in acidic solution using scanning electrochemical microscopy. J. Electrochem. Soc. 2019, 166, C401–C409.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks for the financial support of the National Key R&D Program of China (Nos. 2021YFB3200700 and 2016YFC1100502), the National Natural Science Foundation of China (Nos. 21875260 and 21671193), Beijing Nature Science Foundation (No. 2202069), Zhongguancun Open Laboratory Concept Verification Project (No. 202205229), the Foundation of State Key Laboratory of Digital Manufacturing Equipment and Technology (No. DMETKF2022004), and the China Science and Technology Cloud for calculation support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihong Li or Yanlin Song.

Electronic Supplementary Material

12274_2022_4667_MOESM1_ESM.pdf

Platinum nickel alloy-MXene catalyst with inverse opal structure for enhanced hydrogen evolution in both acidic and alkaline solutions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

kong, W., Li, L., Yu, X. et al. Platinum nickel alloy-MXene catalyst with inverse opal structure for enhanced hydrogen evolution in both acidic and alkaline solutions. Nano Res. 16, 195–201 (2023). https://doi.org/10.1007/s12274-022-4667-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4667-x

Keywords

Navigation