Skip to main content
Log in

A perspective on influences of cathode material degradation on oxygen transport resistance in low Pt PEMFC

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A large-scale industrial application of proton exchange membrane fuel cells (PEMFCs) greatly depends on both substantial cost reduction and continuous durability enhancement. However, compared to effects of material degradation on apparent activity loss, little attention has been paid to influences on the phenomena of mass transport. In this review, influences of the degradation of key materials in membrane electrode assemblies (MEAs) on oxygen transport resistance in both cathode catalyst layers (CCLs) and gas diffusion layers (GDLs) are comprehensively explored, including carbon support, electrocatalyst, ionomer in CCLs as well as carbon material and hydrophobic polytetrafluoroethylene (PTFE) in GDLs. It is analyzed that carbon corrosion in CCLs will result in pore structure destruction and impact ionomer distribution, thus affecting both the bulk and local oxygen transport behavior. Considering the catalyst degradation, an eventual decrease in electrochemical active surface area (ECSA) definitely increases the local oxygen transport resistance since a decrease in active sites will lead to a longer oxygen transport path. It is also noted that problems concerning oxygen transport caused by the degradation of ionomer chemical structure in CCLs should not be ignored. Both cation contamination and chemical decomposition will change the structure of ionomer, thus worsening the local oxygen transport. Finally, it is found that the loss of carbon and PTFE in GDLs lead to a higher hydrophilicity, which is related to an occurrence of water flooding and increase in the oxygen transport resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiao, K.; Xuan, J.; Du, Q.; Bao, Z. M.; Xie, B.; Wang, B. W.; Zhao, Y.; Fan, L. H.; Wang, H. Z.; Hou, Z. J. et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369.

    Article  CAS  Google Scholar 

  2. Suter, T. A. M.; Smith, K.; Hack, J.; Rasha, L.; Rana, Z.; Angel, G. M. A.; Shearing, P. R.; Miller, T. S.; Brett, D. J. L. Engineering catalyst layers for next-generation polymer electrolyte fuel cells: A review of design, materials, and methods. Adv. Energy Mater. 2021, 11, 2101025.

    Article  CAS  Google Scholar 

  3. Thompson, S. T.; Wilson, A. R.; Zelenay, P.; Myers, D. J.; More, K. L.; Neyerlin, K. C.; Papageorgopoulos, D. ElectroCat: DOE’s approach to PGM-free catalyst and electrode R&D. Solid State Ionics 2018, 319, 68–76.

    Article  CAS  Google Scholar 

  4. USDOE. Multi-Year Research, Development, and Demonstration Plan: 2016 FUEL CELLS SECTION[Online] https://www.energy.gov/sites/default/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf.

  5. Kulikovsky, A. Impedance and resistivity of low-Pt cathode in a PEM fuel cell. J. Electrochem. Soc. 2021, 168, 044512.

    Article  CAS  Google Scholar 

  6. Kongkanand, A.; Mathias, M. F. The priority and challenge of highpower performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 2016, 7, 1127–1137.

    Article  CAS  Google Scholar 

  7. Chowdhury, A.; Radke, C. J.; Weber, A. Z. Transport resistances in fuel-cell catalyst layers. ECS Trans. 2017, 80, 321–333.

    Article  CAS  Google Scholar 

  8. Cheng, X. J.; Wang, C.; Wei, G. H.; Yan, X. H.; Shen, S. Y.; Ke, C. C.; Zhu, F. J.; Zhang, J. L. Insight into the effect of pore-forming on oxygen transport behavior in ultra-low Pt PEMFCs. J. Electrochem. Soc. 2019, 166, F1055–F1061.

    Article  CAS  Google Scholar 

  9. Sun, X. D.; Li, Y. S. Understanding mass and charge transports to create anion-ionomer-free high-performance alkaline direct formate fuel cells. Int. J. Hydrog. Energy 2019, 44, 7538–7543.

    Article  CAS  Google Scholar 

  10. Owejan, J. P.; Trabold, T. A.; Mench, M. M. Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells. Int. J. Heat Mass Transf. 2014, 71, 585–592.

    Article  CAS  Google Scholar 

  11. Jiang, J. H.; Li, Y. S.; Liang, J. R.; Yang, W. W.; Li, X. L. Modeling of high-efficient direct methanol fuel cells with order-structured catalyst layer. Appl. Energy 2019, 252, 113431.

    Article  CAS  Google Scholar 

  12. Shen, S. Y.; Cheng, X. J.; Wang, C.; Yan, X. H.; Ke, C. C.; Yin, J. W.; Zhang, J. L. Exploration of significant influences of the operating conditions on the local O2 transport in proton exchange membrane fuel cells (PEMFCs). Phys. Chem. Chem. Phys. 2017, 19, 26221–26229.

    Article  CAS  Google Scholar 

  13. Perry, M. L.; Newman, J.; Cairns, E. J. Mass transport in gasdiffusion electrodes: A diagnostic tool for fuel-cell cathodes. J. Electrochem. Soc. 1998, 145, 5–15.

    Article  CAS  Google Scholar 

  14. Weber, A. Z.; Kusoglu, A. Unexplained transport resistances for low-loaded fuel-cell catalyst layers. J. Mater. Chem. A 2014, 2, 17207–17211.

    Article  CAS  Google Scholar 

  15. Jomori, S.; Nonoyama, N.; Yoshida, T. Analysis and modeling of PEMFC degradation: Effect on oxygen transport. J. Power Sources 2012, 215, 18–27.

    Article  CAS  Google Scholar 

  16. Kudo, K.; Jinnouchi, R.; Morimoto, Y. Humidity and temperature dependences of oxygen transport resistance of Nafion thin film on platinum electrode. Electrochim. Acta 2016, 209, 682–690.

    Article  CAS  Google Scholar 

  17. Wijmans, J. G.; Baker, R. W. The solution-diffusion model: A review. J. Membr. Sci. 1995, 107, 1–21.

    Article  CAS  Google Scholar 

  18. Greszler, T. A.; Caulk, D.; Sinha, P. The impact of platinum loading on oxygen transport resistance. J. Electrochem. Soc. 2012, 159, F831–F840.

    Article  CAS  Google Scholar 

  19. Wang, C.; Cheng, X. J.; Lu, J. B.; Shen, S. Y.; Yan, X. H.; Yin, J. W.; Wei, G. H.; Zhang, J. L. The experimental measurement of local and bulk oxygen transport resistances in the catalyst layer of proton exchange membrane fuel cells. J. Phys. Chem. Lett. 2017, 8, 5848–5852.

    Article  CAS  Google Scholar 

  20. Wang, H. J.; Wang, R. Q.; Sui, S.; Sun, T.; Yan, Y. C.; Du, S. F. Cathode design for proton exchange membrane fuel cells in automotive applications. Automot. Innov. 2021, 4, 144–164.

    Article  Google Scholar 

  21. Long, Z.; Gao, L. Q.; Li, Y. K.; Kang, B. T.; Lee, J. Y.; Ge, J. J.; Liu, C. P.; Ma, S. H.; Jin, Z.; Ai, H. Q. Micro galvanic cell to generate PtO and extend the triple-phase boundary during self-assembly of Pt/C and Nafion for catalyst layers of PEMFC. ACS Appl. Mater. Interfaces 2017, 9, 38165–38169.

    Article  CAS  Google Scholar 

  22. Dubau, L.; Castanheira, L.; Maillard, F.; Chatenet, M.; Lottin, O.; Maranzana, G.; Dillet, J.; Lamibrac, A.; Perrin, J. C.; Moukheiber, E. et al. A review of PEM fuel cell durability: Materials degradation, local heterogeneities of aging and possible mitigation strategies. WIREs Energy Environ. 2014, 3, 540–560.

    Article  CAS  Google Scholar 

  23. Weber, A. Z.; Borup, R. L.; Darling, R. M.; Das, P. K.; Dursch, T. J.; Gu, W. B.; Harvey, D.; Kusoglu, A.; Litster, S.; Mench, M. M. et al. A critical review of modeling transport phenomena in polymer-electrolyte fuel cells. J. Electrochem. Soc. 2014, 161, F1254–F1299.

    Article  Google Scholar 

  24. Banerjee, R.; Kandlikar, S. G. Two-phase flow and thermal transients in proton exchange membrane fuel cells—A critical review. Int. J. Hydrog. Energy 2015, 40, 3990–4010.

    Article  CAS  Google Scholar 

  25. Lopez-Haro, M.; Guétaz, L.; Printemps, T.; Morin, A.; Escribano, S.; Jouneau, P. H.; Bayle-Guillemaud, P.; Chandezon, F.; Gebel, G. Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nat. Commun. 2014, 5, 5229.

    Article  CAS  Google Scholar 

  26. Zhang, X.; Yang, Y. P.; Zhang, X. Y.; Liu, H. T. Identification of performance degradations in catalyst layer and gas diffusion layer in proton exchange membrane fuel cells. J. Power Sources 2020, 449, 227580.

    Article  CAS  Google Scholar 

  27. Hiramitsu, Y.; Sato, H.; Hosomi, H.; Aoki, Y.; Harada, T.; Sakiyama, Y.; Nakagawa, Y.; Kobayashi, K.; Hori, M. Influence of humidification on deterioration of gas diffusivity in catalyst layer on polymer electrolyte fuel cell. J. Power Sources 2010, 195, 435–444.

    Article  CAS  Google Scholar 

  28. Samad, S.; Loh, K. S.; Wong, W. Y.; Lee, T. K.; Sunarso, J.; Chong, S. T.; Daud, W. R. W. Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. Int. J. Hydrog. Energy 2018, 43, 7823–7854.

    Article  CAS  Google Scholar 

  29. Trogadas, P.; Fuller, T. F.; Strasser, P. Carbon as catalyst and support for electrochemical energy conversion. Carbon 2014, 75, 5–42.

    Article  CAS  Google Scholar 

  30. Wang, C. M.; Ricketts, M.; Soleymani, A. P.; Jankovic, J.; Waldecker, J.; Chen, J. X. Effect of carbon support characteristics on fuel cell durability in accelerated stress testing. J. Electrochem. Soc. 2021, 168, 044507.

    Article  CAS  Google Scholar 

  31. Meyer, Q.; Zeng, Y. C.; Zhao, C. Electrochemical impedance spectroscopy of catalyst and carbon degradations in proton exchange membrane fuel cells. J. Power Sources 2019, 437, 226922.

    Article  CAS  Google Scholar 

  32. Zhao, J. J.; Tu, Z. K.; Chan, S. H. Carbon corrosion mechanism and mitigation strategies in a proton exchange membrane fuel cell (PEMFC): A review. J. Power Sources 2021, 488, 229434.

    Article  CAS  Google Scholar 

  33. Park, Y. C.; Kakinuma, K.; Uchida, M.; Tryk, D. A.; Kamino, T.; Uchida, H.; Watanabe, M. Investigation of the corrosion of carbon supports in polymer electrolyte fuel cells using simulated startup/shutdown cycling. Electrochim. Acta 2013, 91, 195–207.

    Article  CAS  Google Scholar 

  34. Linse, N.; Gubler, L.; Scherer, G. G.; Wokaun, A. The effect of platinum on carbon corrosion behavior in polymer electrolyte fuel cells. Electrochim. Acta 2011, 56, 7541–7549.

    Article  CAS  Google Scholar 

  35. Li, Y. Q.; Zheng, Z.; Chen, X. R.; Liu, Y. W.; Liu, M. T.; Li, J.; Xiong, D. P.; Xu, J. Carbon corrosion behaviors and the mechanical properties of proton exchange membrane fuel cell cathode catalyst layer. Int. J. Hydrog. Energy 2020, 45, 23519–23525.

    Article  CAS  Google Scholar 

  36. White, R. T.; Wu, A.; Najm, M.; Orfino, F. P.; Dutta, M.; Kjeang, E. 4D in situ visualization of electrode morphology changes during accelerated degradation in fuel cells by X-ray computed tomography. J. Power Sources 2017, 350, 94–102.

    Article  CAS  Google Scholar 

  37. Schulenburg, H.; Schwanitz, B.; Linse, N.; Scherer, G. G.; Wokaun, A.; Krbanjevic, J.; Grothausmann, R.; Manke, I. 3D imaging of catalyst support corrosion in polymer electrolyte fuel cells. J. Phys. Chem. C 2011, 115, 14236–14243.

    Article  CAS  Google Scholar 

  38. Hegge, F.; Sharman, J.; Moroni, R.; Thiele, S.; Zengerle, R.; Breitwieser, M.; Vierrath, S. Impact of carbon support corrosion on performance losses in polymer electrolyte membrane fuel cells. J. Electrochem. Soc. 2019, 166, F956–F962.

    Article  CAS  Google Scholar 

  39. Page, K. A.; Kusoglu, A.; Stafford, C. M.; Kim, S.; Kline, R. J.; Weber, A. Z. Confinement-driven increase in ionomer thin-film modulus. Nano Lett. 2014, 14, 2299–2304.

    Article  CAS  Google Scholar 

  40. Shen, S. Y.; Han, A. D.; Yan, X. H.; Chen, J. R.; Cheng, X. J.; Zhang, J. L. Influence of equivalent weight of ionomer on proton conduction behavior in fuel cell catalyst layers. J. Electrochem. Soc. 2019, 166, F724–F728.

    Article  CAS  Google Scholar 

  41. Berlinger, S. A.; McCloskey, B. D.; Weber, A. Z. Probing ionomer interactions with electrocatalyst particles in solution. ACS Energy Lett. 2021, 6, 2275–2282.

    Article  CAS  Google Scholar 

  42. Goswami, N.; Mistry, A. N.; Grunewald, J. B.; Fuller, T. F.; Mukherjee, P. P. Corrosion-induced microstructural variability affects transport-kinetics interaction in PEM fuel cell catalyst layers. J. Electrochem. Soc. 2020, 167, 084519.

    Article  CAS  Google Scholar 

  43. Li, Y. Q.; Xiong, D. P.; Liu, Y. W.; Liu, M. T.; Liu, J. Z.; Liang, C.; Li, C. X.; Xu, J. Correlation between electrochemical performance degradation and catalyst structural parameters on polymer electrolyte membrane fuel cell. Nanotechnol. Rev. 2019, 8, 493–502.

    Article  CAS  Google Scholar 

  44. Park, S.; Shao, Y. Y.; Kou, R.; Viswanathan, V. V.; Towne, S. A.; Rieke, P. C.; Liu, J.; Lin, Y. H.; Wang, Y. Polarization losses under accelerated stress test using multiwalled carbon nanotube supported Pt catalyst in PEM fuel cells. J. Electrochem. Soc. 2011, 158, B297.

    Article  CAS  Google Scholar 

  45. Jeon, Y.; Ji, Y.; Cho, Y. I.; Lee, C.; Park, D. H.; Shul, Y. G. Oxide-carbon nanofibrous composite support for a highly active and stable polymer electrolyte membrane fuel-cell catalyst. ACS Nano 2018, 12, 6819–6829.

    Article  CAS  Google Scholar 

  46. Dogan, D. C.; Cho, S.; Hwang, S. M.; Kim, Y. M.; Guim, H.; Yang, T. H.; Park, S. H.; Park, G. G.; Yim, S. D. Highly durable supportless Pt hollow spheres designed for enhanced oxygen transport in cathode catalyst layers of proton exchange membrane fuel cells. ACS Appl. Mater. Interfaces 2016, 8, 27730–27739.

    Article  CAS  Google Scholar 

  47. Shao, Y. Y.; Yin, G. P.; Gao, Y. Z. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J. Power Sources 2007, 171, 558–566.

    Article  CAS  Google Scholar 

  48. Chourashiya, M.; Vindt, S. T.; Palenzuela, A. A. V.; Pedersen, C. M.; Kallesøe, C.; Andersen, S. M. Low-cost graphite as durable support for Pt-based cathode electrocatalysts for proton exchange membrane based fuel cells. Int. J. Hydrog. Energy 2018, 43, 23275–23284.

    Article  CAS  Google Scholar 

  49. Pérez-Rodríguez, S.; Sebastián, D.; Lázaro, M. J. Electrochemical oxidation of ordered mesoporous carbons and the influence of graphitization. Electrochim. Acta 2011, 303, 167–175.

    Article  Google Scholar 

  50. Cheng, X. J.; Wei, G. H.; Wang, C.; Shen, S. Y.; Zhang, J. L. Experimental probing of effects of carbon support on bulk and local oxygen transport resistance in ultra-low Pt PEMFCs. Int. J. Heat Mass Transf. 2021, 164, 120549.

    Article  CAS  Google Scholar 

  51. Ahluwalia, R. K.; Arisetty, S.; Peng, J. K.; Subbaraman, R.; Wang, X. P.; Kariuki, N.; Myers, D. J.; Mukundan, R.; Borup, R.; Polevaya, O. Dynamics of particle growth and electrochemical surface area loss due to platinum dissolution. J. Electrochem. Soc. 2014, 161, F291–F304.

    Article  CAS  Google Scholar 

  52. Ferreira, P. J.; La O’, G. J.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteiger, H. A. Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells: A mechanistic investigation. J. Electrochem. Soc. 2005, 152, A2256.

    Article  Google Scholar 

  53. Jahnke, T.; Futter, G. A.; Baricci, A.; Rabissi, C.; Casalegno, A. Physical modeling of catalyst degradation in low temperature fuel cells: Platinum oxidation, dissolution, particle growth and platinum band formation. J. Electrochem. Soc. 2020, 167, 013523.

    Article  CAS  Google Scholar 

  54. Meier, J. C.; Galeano, C.; Katsounaros, I.; Witte, J.; Bongard, H. J.; Topalov, A. A.; Baldizzone, C.; Mezzavilla, S.; Schüth, F.; Mayrhofer, K. J. J. Design criteria for stable Pt/C fuel cell catalysts. Beilstein J. Nanotechnol. 2014, 5, 44–67.

    Article  Google Scholar 

  55. Chen, S.; Gasteiger, H. A.; Hayakawa, K.; Tada, T.; Shao-Horn, Y. Platinum-alloy cathode catalyst degradation in proton exchange membrane fuel cells: Nanometer-scale compositional and morphological changes. J. Electrochem. Soc. 2010, 157, A82–A97.

    Article  CAS  Google Scholar 

  56. Kneer, A.; Jankovic, J.; Susac, D.; Putz, A.; Wagner, N.; Sabharwal, M.; Secanell, M. Correlation of changes in electrochemical and structural parameters due to voltage cycling induced degradation in PEM fuel cells. J. Electrochem. Soc. 2018, 165, F3241–F3250.

    Article  CAS  Google Scholar 

  57. Ono, Y.; Mashio, T.; Takaichi, S.; Ohma, A.; Kanesaka, H.; Shinohara, K. The analysis of performance loss with low platinum loaded cathode catalyst layers. ECS Trans. 2010, 28, 69–78.

    Article  CAS  Google Scholar 

  58. Ono, Y.; Ohma, A.; Shinohara, K.; Fushinobu, K. Influence of equivalent weight of ionomer on local oxygen transport resistance in cathode catalyst layers. J. Electrochem. Soc. 2013, 160, F779–F787.

    Article  CAS  Google Scholar 

  59. Darling, R. M.; Burlatsky, S. F. An analysis of the impact of particle growth on transport losses in polymer-electrolyte fuel cells. J. Electrochem. Soc. 2021, 168, 054512.

    Article  CAS  Google Scholar 

  60. Gwak, G.; Lee, J.; Ghasemi, M.; Choi, J.; Lee, S. W.; Jang, S. S.; Ju, H. Analyzing oxygen transport resistance and Pt particle growth effect in the cathode catalyst layer of polymer electrolyte fuel cells. Int. J. Hydrog. Energy 2020, 45, 13414–13427.

    Article  CAS  Google Scholar 

  61. Owejan, J. P.; Owejan, J. E.; Gu, W. B. Impact of platinum loading and catalyst layer structure on PEMFC performance. J. Electrochem. Soc. 2013, 160, F824–F833.

    Article  CAS  Google Scholar 

  62. Zhou, Y. K.; Neyerlin, K.; Olson, T. S.; Pylypenko, S.; Bult, J.; Dinh, H. N.; Gennett, T.; Shao, Z. P.; O’Hayre, R. Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ. Sci. 2010, 3, 1437–1446.

    Article  CAS  Google Scholar 

  63. Yu, X. W.; Ye, S. Y. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst. J. Power Sources 2007, 172, 133–144.

    Article  CAS  Google Scholar 

  64. Wang, X. F.; Qi, J.; Ozdemir, O.; Pasaogullari, U.; Bonville, L. J.; Molter, T. Effect of Ca2+ as an air impurity on polymer electrolyte fuel cells. ECS Trans. 2013, 58, 529–536.

    Article  Google Scholar 

  65. Coms, F. D.; Liu, H.; Owejan, J. E. Mitigation of perfluorosulfonic acid membrane chemical degradation using cerium and manganese ions. ECS Trans. 2008, 16, 1735–1747.

    Article  CAS  Google Scholar 

  66. Cheng, X.; Shi, Z.; Glass, N.; Zhang, L.; Zhang, J. J.; Song, D. T.; Liu, Z. S.; Wang, H. J.; Shen, J. A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. J. Power Sources 2007, 165, 739–756.

    Article  CAS  Google Scholar 

  67. Xiong, Y.; Xiao, L.; Yang, Y.; DiSalvo, F. J.; Abruña, H. D. High-loading intermetallic Pt3Co/C core—shell nanoparticles as enhanced activity electrocatalysts toward the oxygen reduction reaction (ORR). Chem. Mater. 2018, 30, 1532–1539.

    Article  CAS  Google Scholar 

  68. Tesfaye, M.; Kusoglu, A. Impact of Co-alloy leaching and cation in ionomer thin-films. ECS Trans. 2018, 86, 359–367.

    Article  CAS  Google Scholar 

  69. Yoshida, T.; Kojima, K. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. Electrochem. Soc. Interface 2015, 24, 45–49.

    Article  CAS  Google Scholar 

  70. Okada, T.; Nakamura, N.; Yuasa, M.; Sekine, I. Ion and water transport characteristics in membranes for polymer electrolyte fuel cells containing H+ and Ca2+ cations. J. Electrochem. Soc. 1997, 144, 2744–2750.

    Article  CAS  Google Scholar 

  71. Okada, T. Theory for water management in membranes for polymer electrolyte fuel cells: Part 1. The effect of impurity ions at the anode side on the membrane performances. J. Electroanal. Chem. 1999, 465, 1–17.

    Article  CAS  Google Scholar 

  72. Okada, T.; Møller-Holst, S.; Gorseth, O.; Kjelstrup, S. Transport and equilibrium properties of Nafion® membranes with H+ and Na+ ions. J. Electroanal. Chem. 1998, 442, 137–145.

    Article  CAS  Google Scholar 

  73. Han, A. D.; Fu, C. H.; Yan, X. H.; Chen, J. R.; Cheng, X. J.; Ke, C. C.; Hou, J. B.; Shen, S. Y.; Zhang, J. L. Effect of cobalt ion contamination on proton conduction of ultrathin Nafion film. Int. J. Hydrog. Energy 2020, 45, 25276–25285.

    Article  CAS  Google Scholar 

  74. Braaten, J. P.; Xu, X. M.; Cai, Y.; Kongkanand, A.; Litster, S. Contaminant cation effect on oxygen transport through the ionomers of polymer electrolyte membrane fuel cells. J. Electrochem. Soc. 2019, 166, F1337–F1343.

    Article  CAS  Google Scholar 

  75. Mohamed, H. F. M.; Kobayashi, Y.; Kuroda, C. S.; Ohira, A. Effects of ion exchange on the free volume and oxygen permeation in Nafion for fuel cells. J. Phys. Chem. B 2009, 113, 2247–2252.

    Article  CAS  Google Scholar 

  76. Mohamed, H. F. M.; Kobayashi, Y.; Kuroda, C. S.; Ohira, A. Free volume and gas permeation in ion-exchanged forms of the Nafion® membrane. J. Phys.: Conf. Ser. 2010, 225, 012038.

    Google Scholar 

  77. Mukaddam, M.; Wang, Y. G.; Pinnau, I. Structural, thermal, and gas-transport properties of Fe3+ ion-exchanged Nafion membranes. ACS Omega 2018, 3, 7474–7482.

    Article  CAS  Google Scholar 

  78. Jalani, N. H.; Datta, R. The effect of equivalent weight, temperature, cationic forms, sorbates, and nanoinorganic additives on the sorption behavior of Nafion®. J. Membr. Sci. 2005, 264, 167–175.

    Article  CAS  Google Scholar 

  79. Shi, S. W.; Weber, A. Z.; Kusoglu, A. Structure-transport relationship of perfluorosulfonic-acid membranes in different cationic forms. Electrochim. Acta 2016, 220, 517–528.

    Article  CAS  Google Scholar 

  80. Hsu, W. Y.; Gierke, T. D. Ion transport and clustering in Nafion perfluorinated membranes. J. Membr. Sci. 1981, 13, 307–326.

    Article  Google Scholar 

  81. Kusoglu, A.; Santare, M. H.; Karlsson, A. M. Mechanics-based model for non-affine swelling in perfluorosulfonic acid (PFSA) membranes. Polymer 2009, 50, 2481–2491.

    Article  CAS  Google Scholar 

  82. Gierke, T. D.; Munn, G. E.; Wilson, F. C. The morphology in Nafion perfluorinated membrane products, as determined by wide-and small-angle X-ray studies. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 1687–1704.

    Article  CAS  Google Scholar 

  83. Lee, K.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K. I. Effect of recast temperature on diffusion and dissolution of oxygen and morphological properties in recast Nafion. J. Electrochem. Soc. 2004, 151, A639.

    Article  CAS  Google Scholar 

  84. Catalano, J.; Myezwa, T.; De Angelis, M. G.; Baschetti, M. G.; Sarti, G. C. The effect of relative humidity on the gas permeability and swelling in PFSI membranes. Int. J. Hydrog. Energy 2012, 37, 6308–6316.

    Article  CAS  Google Scholar 

  85. Sethuraman, V. A.; Khan, S.; Jur, J. S.; Haug, A. T.; Weidner, J. W. Measuring oxygen, carbon monoxide and hydrogen sulfide diffusion coefficient and solubility in Nafion membranes. Electrochim. Acta 2009, 54, 6850–6860.

    Article  CAS  Google Scholar 

  86. Wakabayashi, N.; Takeichi, M.; Itagaki, M.; Uchida, H.; Watanabe, M. Temperature-dependence of oxygen reduction activity at a platinum electrode in an acidic electrolyte solution investigated with a channel flow double electrode. J. Electroanal. Chem. 2005, 574, 339–346.

    Article  CAS  Google Scholar 

  87. Ban, S.; Huang, C.; Yuan, X. Z.; Wang, H. J. Molecular simulation of gas adsorption, diffusion, and permeation in hydrated Nafion membranes. J. Phys. Chem. B 2011, 115, 11352–11358.

    Article  CAS  Google Scholar 

  88. Huang, D.; Song, B. Y.; Li, M. J.; Li, X. Y. Oxygen diffusion in cation-form Nafion membrane of microbial fuel cells. Electrochim. Acta 2018, 276, 268–283.

    Article  CAS  Google Scholar 

  89. Fan, Y. F.; Tongren, D.; Cornelius, C. J. The role of a metal ion within Nafion upon its physical and gas transport properties. Eur. Polym. J. 2014, 50, 271–278.

    Article  CAS  Google Scholar 

  90. Pan, M. Z.; Pan, C. J.; Li, C.; Zhao, J. A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability. Renew. Sustain. Energy Rev. 2021, 141, 110771.

    Article  CAS  Google Scholar 

  91. Uchiyama, T.; Kato, M.; Yoshida, T. Buckling deformation of polymer electrolyte membrane and membrane electrode assembly under humidity cycles. J. Power Sources 2012, 206, 37–46.

    Article  CAS  Google Scholar 

  92. Rodgers, M. P.; Bonville, L. J.; Kunz, H. R.; Slattery, D. K.; Fenton, J. M. Fuel cell perfluorinated sulfonic acid membrane degradation correlating accelerated stress testing and lifetime. Chem. Rev. 2012, 112, 6075–6103.

    Article  CAS  Google Scholar 

  93. Uchiyama, T.; Kato, M.; Ikogi, Y.; Yoshida, T. Mechanical degradation mechanism of membrane electrode assemblies in buckling test under humidity cycles. J. Fuel Cell Sci. Technol. 2012, 9, 061005.

    Article  Google Scholar 

  94. Bas, C.; Flandin, L.; Danerol, A. S.; Claude, E.; Rossinot, E.; Alberola, N. D. Changes in the chemical structure and properties of a perfluorosulfonated acid membrane induced by fuel-cell operation. J. Appl. Polym. Sci. 2010, 117, 2121–2132.

    Article  CAS  Google Scholar 

  95. Tang, H. L.; Peikang, S.; Jiang, S. P.; Wang, F.; Pan, M. A degradation study of Nafion proton exchange membrane of PEM fuel cells. J. Power Sources 2007, 170, 85–92.

    Article  CAS  Google Scholar 

  96. Shi, W. Q.; Baker, L. A. Imaging heterogeneity and transport of degraded Nafion membranes. RSC Adv. 2015, 5, 99284–99290.

    Article  CAS  Google Scholar 

  97. Xiao, S. H.; Zhang, H. M. The investigation of resin degradation in catalyst layer of proton exchange membrane fuel cell. J. Power Sources 2014, 246, 858–861.

    Article  CAS  Google Scholar 

  98. Gao, Y. Y.; Hou, M.; Jiang, Y. Y.; Liang, D.; Ai, J.; Zheng, L. M. Chemical stability investigations of catalyst layer in PEMFC. J. Electrochem. 2018, 24, 227–234.

    CAS  Google Scholar 

  99. Bass, M.; Berman, A.; Singh, A.; Konovalov, O.; Freger, V. Surface-induced micelle orientation in Nafion films. Macromolecules 2011, 44, 2893–2899.

    Article  CAS  Google Scholar 

  100. Tesfaye, M.; Kushner, D. I.; Kusoglu, A. Interplay between swelling kinetics and nanostructure in perfluorosulfonic acid thin-films: Role of hygrothermal aging. ACS Appl. Polym. Mater. 2011, 1, 631–635.

    Article  Google Scholar 

  101. Yagi, I.; Inokuma, K.; Kimijima, K.; Notsu, H. Molecular structure of buried perfluorosulfonated ionomer/Pt interface probed by vibrational sum frequency generation spectroscopy. J. Phys. Chem. C 2014, 118, 26182–26190.

    Article  CAS  Google Scholar 

  102. Xing, Y. J.; Li, H. B.; Avgouropoulos, G. Research progress of proton exchange membrane failure and mitigation strategies. Materials 2021, 14, 2591.

    Article  CAS  Google Scholar 

  103. Zhao, N.; Chu, Y.; Xie, Z.; Eggen, K.; Girard, F.; Shi, Z. Effects of fuel cell operating conditions on proton exchange membrane durability at open-circuit voltage. Fuel Cells 2020, 20, 176–184.

    Article  CAS  Google Scholar 

  104. Atiyeh, H. K.; Karan, K.; Peppley, B.; Phoenix, A.; Halliop, E.; Pharoah, J. Experimental investigation of the role of a microporous layer on the water transport and performance of a PEM fuel cell. J. Power Sources 2007, 170, 111–121.

    Article  CAS  Google Scholar 

  105. Gostick, J. T.; Ioannidis, M. A.; Fowler, M. W.; Pritzker, M. D. On the role of the microporous layer in PEMFC operation. Electrochem. Commun. 2009, 11, 576–579.

    Article  CAS  Google Scholar 

  106. Navarro, A. J.; Gómez, M. A.; Daza, L.; López-Cascales, J. J. Production of gas diffusion layers with cotton fibers for their use in fuel cells. Sci. Rep. 2022, 12, 4219.

    Article  CAS  Google Scholar 

  107. Yousfi-Steiner, N.; Moçotéguy, P.; Candusso, D.; Hissel, D. A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation. J. Power Sources 2009, 194, 130–145.

    Article  CAS  Google Scholar 

  108. Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y. S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D. et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 2007, 107, 3904–3951.

    Article  CAS  Google Scholar 

  109. Yang, Y. G.; Zhou, X. Y.; Li, B.; Zhang, C. M. Failure of cathode gas diffusion layer in 1 kW fuel cell stack under new European driving cycle. Appl. Energy 2021, 303, 117688.

    Article  CAS  Google Scholar 

  110. Oh, H.; Lee, Y. I.; Lee, G.; Min, K.; Yi, J. S. Experimental dissection of oxygen transport resistance in the components of a polymer electrolyte membrane fuel cell. J. Power Sources 2017, 345, 67–77.

    Article  CAS  Google Scholar 

  111. Pang, J.; Li, S.; Wang, R. Y.; Zhu, K.; Liu, S. C.; Guo, Z.; Pan, M. Durability failure analysis of proton exchange membrane fuel cell and its effect on oxygen transport in gas diffusion layer. J. Electrochem. Soc. 2019, 166, F1016–F1021.

    Article  CAS  Google Scholar 

  112. Jayakumar, A. A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack. Front. Energy 2019, 13, 325–338.

    Article  Google Scholar 

  113. Huang, S. Y.; Ganesan, P.; Jung, H. Y.; Popov, B. N. Development of supported bifunctional oxygen electrocatalysts and corrosion-resistant gas diffusion layer for unitized regenerative fuel cell applications. J. Power Sources 2012, 198, 23–29.

    Article  CAS  Google Scholar 

  114. Yang, P. P.; Wu, X. B.; Xie, Z. Y.; Wang, P.; Liu, C. B.; Huang, Q. Z. Durability improving and corrosion-resistance mechanism of graphene oxide modified ultra-thin carbon paper used in PEM fuel cell. Corros Sci 2018, 130, 95–102.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (No. 2021YFB4001303) and the Science and Technology Commission of Shanghai Municipality (No. 21DZ1208601)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuiyun Shen or Junliang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Cheng, X., Yan, X. et al. A perspective on influences of cathode material degradation on oxygen transport resistance in low Pt PEMFC. Nano Res. 16, 377–390 (2023). https://doi.org/10.1007/s12274-022-4642-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4642-6

Keywords

Navigation