Skip to main content
Log in

Effects of symmetric and asymmetric salt conditions on a selective solid-state nanopore assay

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Conventional solid-state nanopore measurements sense all translocating entities, necessitating meticulous analysis to differentiate target biomolecules. To address this, we have established a selective assay with the platform that has shown utility in quantifying several nucleic acid biomarkers. However, limited detection efficiency and intrinsic noise have so far limited assay resolution to 10 nM. Improvements in this value require manipulation of translocation dynamics. Here, we report the effects of NaCl conditions on assay performance. We first investigate symmetric conditions, finding sensitivity increases with salt concentration but selectivity is maximized at 1.0 M NaCl. We then probe asymmetric conditions, showing a remarkable impact on assay sensitivity and selectivity when measurement buffer NaCl concentration in the reservoir with the translocating molecules is low and the opposite reservoir is increased. Using optimum conditions, we demonstrate detection of target biomolecules down to a concentration of 100 pM which is an improvement of 2 orders of magnitude over past results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Srinivas, P. R.; Kramer, B. S.; Srivastava, S. Trends in biomarker research for cancer detection. Lancet Oncol. 2001, 2, 698–704.

    Article  CAS  Google Scholar 

  2. Qureshi, A.; Gurbuz, Y.; Niazi, J. H. Biosensors for cardiac biomarkers detection: A review. Sens. Actuators B: Chem. 2012, 171-172, 62–76.

    Article  Google Scholar 

  3. Berg, D. Biomarkers for the early detection of Parkinson’s and Alzheimer’s disease. Neurodegener. Dis. 2008, 5, 133–136.

    Article  Google Scholar 

  4. Rysz, J.; Gluba-Brzózka, A.; Franczyk, B.; Jablonowski, Z.; Cialkowska-Rysz, A. Novel biomarkers in the diagnosis of chronic kidney disease and the prediction of its outcome. Int. J. Mol. Sci. 2017, 18, 1702.

    Article  Google Scholar 

  5. Broza, Y. Y.; Zhou, X.; Yuan, M. M.; Qu, D. Y.; Zheng, Y. B.; Vishinkin, R.; Khatib, M.; Wu, W. W.; Haick, H. Disease detection with molecular biomarkers: From chemistry of body fluids to nature-inspired chemical sensors. Chem. Rev. 2019, 119, 11761–11817.

    Article  CAS  Google Scholar 

  6. Wishart, D. S.; Bartok, B.; Oler, E.; Liang, K. Y. H.; Budinski, Z.; Berjanskii, M.; Guo, A.; Cao, X.; Wilson, M. MarkerDB: An online database of molecular biomarkers. Nucleic Acids Res. 2021, 49, D1259–D1267.

    Article  CAS  Google Scholar 

  7. Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111.

    Article  CAS  Google Scholar 

  8. Liu, J. W.; Lu, Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem., Int. Ed. 2005, 45, 90–94.

    Article  Google Scholar 

  9. Liu, R. T.; Ye, X. Y.; Cui, T. H. Recent progress of biomarker detection sensors. Research 2020, 2020, 7949037.

    Article  CAS  Google Scholar 

  10. Huang, J.; Du, J.; Cevher, Z.; Ren, Y. H.; Wu, X. H.; Chu, Y. L. Printable and flexible phototransistors based on blend of organic semiconductor and biopolymer. Adv. Funct. Mater. 2017, 27, 1604163.

    Article  Google Scholar 

  11. Yang, Y. J.; Zeng, B.; Li, Y. X.; Liang, H. G.; Yang, Y. B.; Yuan, Q. Construction of MoS2 field effect transistor sensor array for the detection of bladder cancer biomarkers. Sci. China Chem. 2020, 63, 997–1003.

    Article  CAS  Google Scholar 

  12. Hawkridge, A. M.; Muddiman, D. C. Mass spectrometry-based biomarker discovery: Toward a global proteome index of individuality. Annu. Rev. Anal. Chem. (Palo Alto Calif) 2009, 2, 265–277.

    Article  CAS  Google Scholar 

  13. Li, C.; Yang, Y. C.; Wu, D.; Li, T. Q.; Yin, Y. M.; Li, G. X. Improvement of enzyme-linked immunosorbent assay for the multicolor detection of biomarkers. Chem. Sci. 2016, 7, 3011–3016.

    Article  CAS  Google Scholar 

  14. Hajian, R.; Balderston, S.; Tran, T.; deBoer, T.; Etienne, J.; Sandhu, M.; Wauford, N. A.; Chung, J. Y.; Nokes, J.; Athaiya, M.; Paredes, J. et al. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 2019, 3, 427–437.

    Article  CAS  Google Scholar 

  15. Kong, D. R.; Wang, X. J.; Gu, C. J.; Guo, M. Q.; Wang, Y.; Ai, Z. L.; Zhang, S.; Chen, Y. H.; Liu, W. T.; Wu, Y. G. et al. Direct SARS-CoV-2 nucleic acid detection by Y-shaped DNA dual-probe transistor assay. J. Am. Chem. Soc. 2021, 143, 17004–17014.

    Article  CAS  Google Scholar 

  16. Thomou, T.; Mori, M. A.; Dreyfuss, J. M.; Konishi, M.; Sakaguchi, M.; Wolfrum, C.; Rao, T. N.; Winnay, J. N.; Garcia-Martin, R.; Grinspoon, S. K. et al. Adipose-derived circulating MiRNAs regulate gene expression in other tissues. Nature 2017, 542, 450–455.

    Article  CAS  Google Scholar 

  17. Kanagawa, T. Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng. 2003, 96, 317–323.

    Article  CAS  Google Scholar 

  18. Chen, C. F.; Tan, R. Y.; Wong, L. D.; Fekete, R.; Halsey, J. Quantitation of microRNAs by real-time RT-qPCR. Methods Mol. Biol. 2011, 687, 113–134.

    Article  CAS  Google Scholar 

  19. Grunau, C.; Clark, S. J.; Rosenthal, A. Bisulfite genomic sequencing: Systematic investigation of critical experimental parameters. Nucleic Acids Res. 2001, 29, e65.

    Article  CAS  Google Scholar 

  20. Yu, M.; Hon, G. C.; Szulwach, K. E.; Song, C. X.; Jin, P.; Ren, B.; He, C. Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat. Protoc. 2012, 7, 2159–2170.

    Article  CAS  Google Scholar 

  21. Xue, L.; Yamazaki, H.; Ren, R.; Wanunu, M.; Ivanov, A. P.; Edel, J. B. Solid-state nanopore sensors. Nat. Rev. Mater. 2020, 5, 931–951.

    Article  CAS  Google Scholar 

  22. Venkatesan, B. M.; Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 2011, 6, 615–624.

    Article  CAS  Google Scholar 

  23. Dekker, C. Solid-state nanopores. Nat. Nanotechnol. 2007, 2, 209–215.

    Article  CAS  Google Scholar 

  24. He, Y. H.; Tsutsui, M.; Zhou, Y.; Miao, X. S. Solid-state nanopore systems: From materials to applications. NPG Asia Mater. 2021, 13, 48.

    Article  Google Scholar 

  25. Carlsen, A. T.; Zahid, O. K.; Ruzicka, J.; Taylor, E. W.; Hall, A. R. Interpreting the conductance blockades of DNA translocations through solid-state nanopores. ACS Nano 2014, 8, 4754–4760.

    Article  CAS  Google Scholar 

  26. Li, J. L.; Gershow, M.; Stein, D.; Brandin, E.; Golovchenko, J. A. DNA molecules and configurations in a solid-state nanopore microscope. Nat. Mater. 2003, 2, 611–615.

    Article  CAS  Google Scholar 

  27. Storm, A. J.; Chen, J. H.; Zandbergen, H. W.; Dekker, C. Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E 2005, 71, 051903.

    Article  CAS  Google Scholar 

  28. Storm, A. J.; Storm, C.; Chen, J. H.; Zandbergen, H.; Joanny, J. F.; Dekker, C. Fast DNA translocation through a solid-state nanopore. Nano Lett. 2005, 5, 1193–1197.

    Article  CAS  Google Scholar 

  29. Wanunu, M.; Sutin, J.; McNally, B.; Chow, A.; Meller, A. DNA translocation governed by interactions with solid-state nanopores. Biophys. J. 2008, 95, 4716–4725.

    Article  CAS  Google Scholar 

  30. Wanunu, M.; Dadosh, T.; Ray, V.; Jin, J. M.; McReynolds, L.; Drndić, M. Rapid electronic detection of probe-specific MicroRNAs using thin nanopore sensors. Nat. Nanotechnol. 2010, 5, 807–814.

    Article  CAS  Google Scholar 

  31. Lin, Y.; Ying, Y. L.; Shi, X.; Liu, S. C.; Long, Y. T. Direct sensing of cancer biomarkers in clinical samples with a designed nanopore. Chem. Commun. 2017, 53, 11564–11567.

    Article  CAS  Google Scholar 

  32. Rivas, F.; Zahid, O. K.; Reesink, H. L.; Peal, B. T.; Nixon, A. J.; DeAngelis, P. L.; Skardal, A.; Rahbar, E.; Hall, A. R. Label-free analysis of physiological hyaluronan size distribution with a solidstate nanopore sensor. Nat. Commun. 2018, 9, 1037.

    Article  Google Scholar 

  33. He, L. Q.; Tessier, D. R.; Briggs, K.; Tsangaris, M.; Charron, M.; McConnell, E. M.; Lomovtsev, D.; Tabard-Cossa, V. Digital immunoassay for biomarker concentration quantification using solidstate nanopores. Nat. Commun. 2021, 12, 5348.

    Article  CAS  Google Scholar 

  34. Wu, R. P.; Wang, Y. S.; Zhu, Z. T.; Yu, C. M.; Li, H.; Li, B. L.; Dong, S. J. Low-noise solid-state nanopore enhancing direct labelfree analysis for small dimensional assemblies induced by specific molecular binding. ACS Appl. Mater. Interfaces 2021, 13, 9482–9490.

    Article  CAS  Google Scholar 

  35. Iqbal, S. M.; Akin, D.; Bashir, R. Solid-state nanopore channels with DNA selectivity. Nat. Nanotechnol. 2007, 2, 243–248.

    Article  CAS  Google Scholar 

  36. Mussi, V.; Fanzio, P.; Repetto, L.; Firpo, G.; Stigliani, S.; Tonini, G. P.; Valbusa, U. “DNA-dressed nanopore” for complementary sequence detection. Biosens. Bioelectron. 2011, 29, 125–131.

    Article  CAS  Google Scholar 

  37. Cai, S. L.; Pataillot-Meakin, T.; Shibakawa, A.; Ren, R.; Bevan, C. L.; Ladame, S.; Ivanov, A. P.; Edel, J. B. Single-molecule amplification-free multiplexed detection of circulating MicroRNA cancer biomarkers from serum. Nat. Commun. 2021, 12, 3515.

    Article  CAS  Google Scholar 

  38. He, L. Q.; Karau, P.; Tabard-Cossa, V. Fast capture and multiplexed detection of short multi-arm DNA stars in solid-state nanopores. Nanoscale 2019, 11, 16342–16350.

    Article  CAS  Google Scholar 

  39. Zhang, Y.; Gu, Z. D.; Zhao, J. B.; Shao, L. Y.; Kan, Y. J. Sequence-specific detection of DNA strands using a solid-state nanopore assisted by microbeads. Micromachines 2020, 11, 1097.

    Article  Google Scholar 

  40. Carlsen, A. T.; Zahid, O. K.; Ruzicka, J. A.; Taylor, E. W.; Hall, A. R. Selective detection and quantification of modified DNA with solid-state nanopores. Nano Lett. 2014, 14, 5488–5492.

    Article  CAS  Google Scholar 

  41. Arima, A.; Tsutsui, M.; Washio, T.; Baba, Y.; Kawai, T. Solid-state nanopore platform integrated with machine learning for digital diagnosis of virus infection. Anal. Chem. 2021, 93, 215–227.

    Article  CAS  Google Scholar 

  42. Howarth, M.; Chinnapen, D. J. F.; Gerrow, K.; Dorrestein, P. C.; Grandy, M. R.; Kelleher, N. L.; El-Husseini, A.; Ting, A. Y. A monovalent streptavidin with a single femtomolar biotin binding site. Nat. Methods 2006, 3, 267–273.

    Article  CAS  Google Scholar 

  43. Fairhead, M.; Krndija, D.; Lowe, E. D.; Howarth, M. Plug-and-play pairing via defined divalent streptavidins. J. Mol. Biol. 2014, 426, 199–214.

    Article  CAS  Google Scholar 

  44. Zahid, O. K.; Wang, F.; Ruzicka, J. A.; Taylor, E. W.; Hall, A. R. Sequence-specific recognition of MicroRNAs and other short nucleic acids with solid-state nanopores. Nano Lett. 2016, 16, 2033–2039.

    Article  CAS  Google Scholar 

  45. Zahid, O. K.; Zhao, B. S.; He, C.; Hall, A. R. Quantifying mammalian genomic DNA hydroxymethylcytosine content using solid-state nanopores. Sci. Rep. 2016, 6, 29565.

    Article  Google Scholar 

  46. Wang, F.; Zahid, O. K.; Swain, B. E.; Parsonage, D.; Hollis, T.; Harvey, S.; Perrino, F. W.; Kohli, R. M.; Taylor, E. W.; Hall, A. R. Solid-state nanopore analysis of diverse DNA base modifications using a modular enzymatic labeling process. Nano Lett. 2017, 17, 7110–7116.

    Article  CAS  Google Scholar 

  47. Zahid, O. K.; Rivas, F.; Wang, F.; Sethi, K.; Reiss, K.; Bearden, S.; Hall, A. R. Solid-state nanopore analysis of human genomic DNA shows unaltered global 5-hydroxymethylcytosine content associated with early-stage breast cancer. Nanomed.: Nanotechnol., Biol. Med. 2021, 35, 102407.

    Article  CAS  Google Scholar 

  48. Sethi, K.; Dailey, G. P.; Zahid, O. K.; Taylor, E. W.; Ruzicka, J. A.; Hall, A. R. Direct detection of conserved viral sequences and other nucleic acid motifs with solid-state nanopores. ACS Nano 2021, 15, 8474–8483.

    Article  CAS  Google Scholar 

  49. Kowalczyk, S. W.; Wells, D. B.; Aksimentiev, A.; Dekker, C. Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett. 2012, 12, 1038–1044.

    Article  CAS  Google Scholar 

  50. Sha, J. J.; Shi, H. J.; Zhang, Y.; Chen, C.; Liu, L.; Chen, Y. F. Salt gradient improving signal-to-noise ratio in solid-state nanopore. ACS Sens. 2017, 2, 506–512.

    Article  CAS  Google Scholar 

  51. Wanunu, M.; Morrison, W.; Rabin, Y.; Grosberg, A. Y.; Meller, A. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat. Nanotechnol. 2010, 5, 160–165.

    Article  CAS  Google Scholar 

  52. Grosberg, A. Y.; Rabin, Y. DNA capture into a nanopore: Interplay of diffusion and electrohydrodynamics. J. Chem. Phys. 2010, 133, 165102.

    Article  Google Scholar 

  53. Kowalczyk, S. W.; Grosberg, A. Y.; Rabin, Y.; Dekker, C. Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 2011, 22, 315101.

    Article  Google Scholar 

  54. Smeets, R. M. M.; Keyser, U. F.; Dekker, N. H.; Dekker, C. Noise in solid-state nanopores. Proc. Natl. Acad. Sci. USA 2008, 105, 417–421.

    Article  CAS  Google Scholar 

  55. Hagerman, P. J. Flexibility of DNA. Annu. Rev. Biophys. Biophys. Chem. 1988, 17, 265–286.

    Article  CAS  Google Scholar 

  56. Weber, J. A.; Baxter, D. H.; Zhang, S. L.; Huang, D. Y.; How Huang, K.; Jen Lee, M.; Galas, D. J.; Wang, K. The MicroRNA spectrum in 12 body fluids. Clin. Chem. 2010, 56, 1733–1741.

    Article  CAS  Google Scholar 

  57. Portela, A.; Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol. 2010, 28, 1057–1068.

    Article  CAS  Google Scholar 

  58. Yang, J. J.; Ferranti, D. C.; Stern, L. A.; Sanford, C. A.; Huang, J.; Ren, Z.; Qin, L. C.; Hall, A. R. Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection. Nanotechnology 2011, 22, 285310.

    Article  Google Scholar 

  59. Haynes, W. M.; Lide, D. R.; Bruno, T. J. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 97th ed.; CRC Press: Boca Raton, FL, USA, 2016.

    Book  Google Scholar 

Download references

Acknowledgements

This project was supported by NIH awards (Nos. R21CA193067, R33CA246448, and P41EB020594). SS-nanopore fabrication was performed at the Rutgers University Laboratory for Surface Modification. We acknowledge the laboratory of Dr. Mark Howarth (Oxford University) for providing MS protein. We thank Mallory Smith for contributions to figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam R. Hall.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadsworth, I.D., Hall, A.R. Effects of symmetric and asymmetric salt conditions on a selective solid-state nanopore assay. Nano Res. 15, 9936–9942 (2022). https://doi.org/10.1007/s12274-022-4631-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4631-9

Keywords

Navigation