Skip to main content
Log in

Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Defect and interface engineering are efficient approaches to adjust the physical and chemical properties of nanomaterials. In order to effectively utilize these strategies for the improvement of microwave absorption properties (MAPs), in this study, we reported the synthesis of hollow carbon shells and hollow carbon@MoS2 nanocomposites by the template-etching and template-etching-hydrothermal methods, respectively. The obtained results indicated that the degree of defect for hollow carbon shells and hollow carbon@MoS2 could be modulated by the thickness of hollow carbon shell, which effectively fulfilled the optimization of electromagnetic parameters and improvement of MAPs. Furthermore, the microstructure investigations revealed that the precursor of hollow carbon shells was encapsulated by the sheet-like MoS2 in high efficiency. And the introduction of MoS2 nanosheets acting as the shell effectively improved the interfacial effects and boosted the polarization loss capabilities, which resulted in the improvement of comprehensive MAPs. The elaborately designed hollow carbon@MoS2 samples displayed very outstanding MAPs including strong absorption capabilities, broad absorption bandwidth, and thin matching thicknesses. Therefore, this work provided a viable strategy to improve the MAPs of microwave absorbers by taking full advantage of their defect and interface engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lv, H. L.; Yang, Z. H.; Pan, H. G.; Wu, R. B. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946.

    Article  CAS  Google Scholar 

  2. Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 7, 413–431.

    Article  Google Scholar 

  3. Watts, C. M.; Liu, X. L.; Padilla, W. J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 2012, 24, OP98–OP120.

    CAS  Google Scholar 

  4. Liang, J.; Ye, F.; Cao, Y. C.; Mo, R.; Cheng, L. F.; Song, Q. Defect-engineered graphene/Si3N4 multilayer alternating core—shell nanowire membrane: A plainified hybrid for broadband electromagnetic wave absorption. Adv. Funct. Mater. 2022, 32, 2200141.

    Article  CAS  Google Scholar 

  5. Zhao, J.; Wei, Y.; Zhang, Y.; Zhang, Q. G. 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 126, 141–151.

    Article  Google Scholar 

  6. Hu, F. Y.; Wang, X. H.; Bao, S.; Song, L. M.; Zhang, S.; Niu, H. H.; Fan, B. B.; Zhang, R.; Li, H. X. Tailoring electromagnetic responses of delaminated Mo2TiC2Tx MXene through the decoration of Ni particles of different morphologies. Chem. Eng. J. 2022, 440, 135855.

    Article  CAS  Google Scholar 

  7. Fang, Y.; Wang, W. J.; Wang, S.; Hou, X. W.; Xue, W. D.; Zhao, R. A quantitative permittivity model for designing electromagnetic wave absorption materials with conduction loss: A case study with microwave-reduced graphene oxide. Chem. Eng. J. 2022, 439, 135672.

    Article  CAS  Google Scholar 

  8. Zhang, J. J.; Li, Z. H.; Qi, X. S.; Gong, X.; Xie, R.; Deng, C. Y.; Zhong, W.; Du, Y. W. Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber. Compos. Part B Eng. 2021, 222, 109067.

    Article  CAS  Google Scholar 

  9. Huang, M. Q.; Wang, L.; Liu, Q.; You, W. B.; Che, R. C. Interface compatibility engineering of multi-shell Fe@C@TiO2@MoS2 heterojunction expanded microwave absorption bandwidth. Chem. Eng. J. 2022, 429, 132191.

    Article  CAS  Google Scholar 

  10. Liang, L. Y.; Li, Q. M.; Yan, X.; Feng, Y. Z.; Wang, Y. M.; Zhang, H. B.; Zhou, X. P.; Liu, C. T.; Shen, C. Y.; Xie, X. L. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 2021, 15, 6622–6632.

    Article  CAS  Google Scholar 

  11. Liu, J. L.; Zhang, L. M.; Zang, D. Y.; Wu, H. J. A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv. Funct. Mater. 2021, 31, 2105018.

    Article  CAS  Google Scholar 

  12. Liu, J.; Tao, J. Q.; Gao, L. L.; He, X. X.; Wei, B.; Gu, Y. S.; Yao, Z. J.; Zhou, J. T. Morphology-size synergy strategy of SiC@C nanoparticles towards lightweight and efficient microwave absorption. Chem. Eng. J. 2022, 433, 134484.

    Article  CAS  Google Scholar 

  13. Chai, L.; Wang, Y. Q.; Jia, Z. R.; Liu, Z. X.; Zhou, S. Y.; He, Q. C.; Du, H. Y.; Wu, G. L. Tunable defects and interfaces of hierarchical dandelion-like NiCo2O4 via ostwald ripening process for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2022, 429, 132547.

    Article  CAS  Google Scholar 

  14. Chen, X. T.; Wu, Y.; Gu, W. H.; Zhou, M.; Tang, S. L.; Cao, J. M.; Zou, Z. Q.; Ji, G. B. Research progress on nanostructure design and composition regulation of carbon spheres for the microwave absorption. Carbon 2022, 189, 617–633.

    Article  CAS  Google Scholar 

  15. Zhang, N.; Chen, P. Z.; Wang, Y.; Zong, M.; Chen, W. X. Supramolecular self-assembly derived Mo2C/FeCo/NC hierarchical nanostructures with excellent wideband microwave absorption properties. Compos. Sci. Technol. 2022, 221, 109325.

    Article  CAS  Google Scholar 

  16. Fan, B. X.; Xing, L.; He, Q. M.; Zhou, F. J.; Yang, X. F.; Wu, T.; Tong, G. X.; Wang, D. M.; Wu, W. H. Selective synthesis and defects steering superior microwave absorption capabilities of hollow graphitic carbon nitride micro-polyhedrons. Chem. Eng. J. 2022, 435, 135086.

    Article  CAS  Google Scholar 

  17. Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.

    Article  CAS  Google Scholar 

  18. Zhang, Y. G.; Zhang, Y. H.; Zhang, H. F.; Bai, L. Q.; Hao, L.; Ma, T. Y.; Huang, H. W. Defect engineering in metal sulfides for energy conversion and storage. Coord. Chem. Rev. 2021, 448, 214147.

    Article  CAS  Google Scholar 

  19. Luo, J. H.; Feng, M. N.; Dai, Z. Y.; Jiang, C. Y.; Yao, W.; Zhai, N. X. MoS2 wrapped mof-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789.

    Article  CAS  Google Scholar 

  20. Katsuyama, Y.; Haba, N.; Kobayashi, H.; Iwase, K.; Kudo, A.; Honma, I.; Kaner, R. B. Macro- and nano-porous 3D-hierarchical carbon lattices for extraordinarily high capacitance supercapacitors. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202201544.

  21. Huang, L. X.; Duan, Y. P.; Dai, X. H.; Zeng, Y. S.; Ma, G. J.; Liu, Y.; Gao, S. H.; Zhang, W. P. Bioinspired metamaterials: Multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 2019, 15, 1902730.

    Article  Google Scholar 

  22. Zhao, H. Q.; Cheng, Y.; Zhang, Z.; Zhang, B. S.; Pei, C. C.; Fan, F. Y.; Ji, G. B. Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 2021, 173, 501–511.

    Article  CAS  Google Scholar 

  23. Xiang, Z.; Shi, Y. Y.; Zhu, X. J.; Cai, L.; Lu, W. Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, emi shielding, and photothermal conversion. Nano-Micro Lett. 2021, 13, 150.

    Article  CAS  Google Scholar 

  24. Huang, Z. Y.; Chen, H. H.; Huang, Y.; Ge, Z.; Zhou, Y.; Yang, Y.; Xiao, P. S.; Liang, J. J.; Zhang, T. F.; Shi, Q. et al. Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam. Adv. Funct. Mater. 2018, 28, 1704363.

    Article  Google Scholar 

  25. Zhang, X. C.; Liu, M. J.; Xu, J.; Ouyang, Q. Y.; Zhu, C. L.; Zhang, X. L.; Zhang, X. T.; Chen, Y. J. Flexible and waterproof nitrogen-doped carbon nanotube arrays on cotton-derived carbon fiber for electromagnetic wave absorption and electric-thermal conversion. Chem. Eng. J. 2022, 433, 133794.

    Article  CAS  Google Scholar 

  26. Pan, F.; Liu, Z. C.; Deng, B. W.; Dong, Y. Y.; Zhu, X. J.; Huang, C.; Lu, W. Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 2021, 13, 43.

    Article  Google Scholar 

  27. Li, B.; Xu, J.; Xu, H. Y.; Yan, F.; Zhang, X.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Grafting thin N-doped carbon nanotubes on hollow N-doped carbon nanoplates encapsulated with ultrasmall cobalt particles for microwave absorption. Chem. Eng. J. 2022, 435, 134846.

    Article  CAS  Google Scholar 

  28. Cheng, J.; Cai, L.; Shi, Y. Y.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Jiang, H. J.; Zhang, X.; Xiang, Z.; Lu, W. Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 134284.

    Article  CAS  Google Scholar 

  29. Geng, H. R.; Zhang, X.; Xie, W. H.; Zhao, P. F.; Wang, G. Z.; Liao, J. H.; Dong, L. J. Lightweight and broadband 2D MoS2 nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption. J. Colloid Interface Sci. 2022, 609, 33–42.

    Article  CAS  Google Scholar 

  30. Bi, Y. X.; Ma, M. L.; Liu, Y. Y.; Tong, Z. Y.; Wang, R. Z.; Chung, K. L.; Ma, A. J.; Wu, G. L.; Ma, Y.; He, C. et al. Microwave absorption enhancement of 2-dimensional CoZn/C@MoS2@PPY composites derived from metal-organic framework. J. Colloid Interface Sci. 2021, 600, 209–218.

    Article  CAS  Google Scholar 

  31. Lyu, L. F.; Wang, F. L.; Li, B.; Zhang, X.; Qiao, J.; Yang, Y. F.; Liu, J. R. Constructing 1T/2H MoS2 nanosheets/3D carbon foam for high-performance electromagnetic wave absorption. J. Colloid Interface Sci. 2021, 586, 613–620.

    Article  CAS  Google Scholar 

  32. Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

    Article  CAS  Google Scholar 

  33. Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic-dielectric synergy and interfacial engineering to design yolk—shell structured CoNi@Void@C and CoNi@Void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

    Article  CAS  Google Scholar 

  34. Li, C.; Li, Z. H.; Qi, X. S.; Gong, X.; Chen, Y. L.; Peng, Q.; Deng, C. Y.; Jing, T.; Zhong, W. A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. J. Colloid Interface Sci. 2022, 605, 13–22.

    Article  CAS  Google Scholar 

  35. Huang, S.; Wang, L.; Li, Y. C.; Liang, C. B.; Zhang, J. L. Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 2021, 138, 50649.

    Article  CAS  Google Scholar 

  36. Li, J. J.; Abbas, S. U.; Wang, H. Q.; Zhang, Z. C.; Hu, W. P. Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 2021, 13, 216.

    Article  CAS  Google Scholar 

  37. Mei, S. C.; Rui, X. H.; Li, L.; Huang, G. X.; Pan, X. Q.; Ke, M. K.; Wang, Z. H.; Yu, H. Q.; Yu, Y. Quantitative coassembly for precise synthesis of mesoporous nanospheres with pore structure-dependent catalytic performance. Adv. Mater. 2021, 33, 2103130.

    Article  CAS  Google Scholar 

  38. Gu, J. W.; Zhang, Q. Y.; Li, H. C.; Tang, Y. S.; Kong, J.; Dang, J. Study on preparation of SiO2/epoxy resin hybrid materials by means of sol—gel. Polym. Plast. Technol. Eng. 2007, 46, 1129–1134.

    Article  CAS  Google Scholar 

  39. Lu, S. R.; Xia, L.; Xu, J. M.; Ding, C. H.; Li, T. T.; Yang, H.; Zhong, B.; Zhang, T.; Huang, L. N.; Xiong, L. et al. Permittivity-regulating strategy enabling superior electromagnetic wave absorption of lithium aluminum silicate/rGo nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 18626–18636.

    Article  CAS  Google Scholar 

  40. Chen, X. Y.; Fang, Y. L.; Lu, H. Y.; Li, H.; Feng, X. M.; Chen, W. H.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Microstructure-dependent charge/discharge behaviors of hollow carbon spheres and its implication for sodium storage mechanism on hard carbon anodes. Small 2021, 17, 2102248.

    Article  CAS  Google Scholar 

  41. Qiu, S.; Xiao, L. F.; Sushko, M. L.; Han, K. S.; Shao, Y. Y.; Yan, M. Y.; Liang, X. M.; Mai, L. Q.; Feng, J. W.; Cao, Y. L. et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 2017, 7, 1700403.

    Article  Google Scholar 

  42. Guo, R. Q.; Lv, C. X.; Xu, W. J.; Sun, J. W.; Zhu, Y. K.; Yang, X. F.; Li, J. Z.; Sun, J.; Zhang, L. X.; Yang, D. J. Effect of intrinsic defects of carbon materials on the sodium storage performance. Adv. Energy Mater. 2020, 10, 1903652.

    Article  CAS  Google Scholar 

  43. Yao, X. H.; Ke, Y. J.; Ren, W. H.; Wang, X. P.; Xiong, F. Y.; Yang, W.; Qin, M. S.; Li, Q.; Mai, L. Q. Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage. Adv. Energy Mater. 2019, 9, 1900094.

    Article  Google Scholar 

  44. Zhu, J. W.; Mu, S. C. Defect engineering in carbon-based electrocatalysts: Insight into intrinsic carbon defects. Adv. Funct. Mater. 2020, 30, 2001097.

    Article  CAS  Google Scholar 

  45. Cheng, J.; Zhang, H. B.; Ning, M. Q.; Raza, H.; Zhang, D. Q.; Zheng, G. P.; Zheng, Q. B.; Che, R. C. Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy? Adv. Funct. Mater. 2022, 32, 2200123.

    Article  CAS  Google Scholar 

  46. Tong, Z. Y.; Liao, Z. J.; Liu, Y. Y.; Ma, M. L.; Bi, Y. X.; Huang, W. B.; Ma, Y.; Qiao, M. T.; Wu, G. L. Hierarchical Fe3O4/Fe@C@MoS2 core-shell nanofibers for efficient microwave absorption. Carbon 2021, 179, 646–654.

    Article  CAS  Google Scholar 

  47. Yuan, Z. Y.; Wang, L. L.; Li, D. D.; Cao, J. M.; Han, W. Carbon-reinforced Nb2CTx MXene/MoS2 nanosheets as a superior rate and high-capacity anode for sodium-ion batteries. ACS Nano 2021, 15, 7439–7450.

    Article  CAS  Google Scholar 

  48. Wang, J. Q.; Liu, L.; Jiao, S. L.; Ma, K. J.; Lv, J.; Yang, J. J. Hierarchical carbon fiber@MXene@MoS2 core—sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 2020, 30, 2002595.

    Article  CAS  Google Scholar 

  49. Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

    Article  CAS  Google Scholar 

  50. Ning, M. Q.; Jiang, P. H.; Ding, W.; Zhu, X. B.; Tan, G. G.; Man, Q. K.; Li, J. B.; Li, R. W. Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Adv. Funct. Mater. 2021, 31, 2011229.

    Article  CAS  Google Scholar 

  51. Liu, Z. H.; Cui, Y. H.; Li, Q.; Zhang, Q. Y.; Zhang, B. L. Fabrication of folded MXene/MoS2 composite microspheres with optimal composition and their microwave absorbing properties. J. Colloid Interface Sci. 2022, 607, 633–644.

    Article  CAS  Google Scholar 

  52. Liu, Z. C.; Pan, F.; Deng, B. W.; Xiang, Z.; Lu, W. Self-assembled MoS2/3D worm-like expanded graphite hybrids for high-efficiency microwave absorption. Carbon 2021, 174, 59–69.

    Article  CAS  Google Scholar 

  53. Yang, Z. Q.; Guo, H. Q.; You, W. B.; Wu, Z. C.; Yang, L. T.; Wang, M.; Che, R. C. Compressible and flexible PPY@MoS2/C microwave absorption foam with strong dielectric polarization from 2D semiconductor intermediate sandwich structure. Nanoscale 2021, 13, 5115–5124.

    Article  CAS  Google Scholar 

  54. Ye, S.; Xie, A. M.; Wu, F.; Cai, Z. W.; Liu, X.; Tao, T.; Chang, G.; He, Y. B. Carbon encapsulation of MoS2 nanosheets to tune their interfacial polarization and dielectric properties for electromagnetic absorption applications. J. Mater. Chem. C 2021, 9, 537–546.

    Article  CAS  Google Scholar 

  55. Di, J. R.; Duan, Y. P.; Pang, H. F.; Ma, X. R.; Liu, J. Sintering-regulated two-dimensional plate@shell basalt@NiO heterostructure for enhanced microwave absorption. Appl. Surf. Sci. 2022, 574, 151590.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fund of Fok Ying Tung Education Foundation, the Natural Science Foundation of Guizhou province (No. 2017-1034), the Major Research Project of innovative Group of Guizhou province (No. 2018-013), the Natural National Science Foundation of China (Nos. 11604060, 52101010, and 11964006), and the Foundation of the National Key Project for Basic Research (No. 2012CB932304) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaosi Qi or Wei Zhong.

Electronic Supplementary Material

12274_2022_4625_MOESM1_ESM.pdf

Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Qi, X., Gong, X. et al. Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance. Nano Res. 15, 7778–7787 (2022). https://doi.org/10.1007/s12274-022-4625-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4625-7

Keywords

Navigation