Skip to main content
Log in

Rapidly and mildly transferring anatase phase of graphene-activated TiO2 to rutile with elevated Schottky barrier: Facilitating interfacial hot electron injection for Vis-NIR driven photocatalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Visible and even infrared (IR) light-initiated hot electrons of graphene (Gr) catalysts are a promising driven power for green, safe, and sustainable H2O2 synthesis and organic synthesis without the limitation of bandgap-dominated narrow light absorption to visible light confronted by conventional photocatalyst. However, the life time of photogenerated hot electrons is too short to be efficiently used for various photocatalytic reactions. Here, we proposed a straightforward method to prolong the lifetime of photogenerated hot electrons from graphene by tuning the Schottky barrier at Gr/rutile interface to facilitate the hot electron injection. The rational design of Gr-coated TiO2 heterojunctions with interface synergy-induced decrease in the formation energy of the rutile phase makes the phase transfer of TiO2 support proceed smoothly and rapidly via ball milling. The optimized Gr/rutile dyad could provide a H2O2 yield of 1.05 mM·g−1·h−1 under visible light irradiation (λ ≥ 400 nm), which is 30 times of the state-of-the-art noble-metal-free titanium oxide-based photocatalyst, and even achieves a H2O2 yield of 0.39 mM·g−1·h−1 on photoexcitation by near-infrared-region light (∼ 800 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474–6502.

    Article  CAS  Google Scholar 

  2. Schultz, D. M.; Yoon, T. P. Solar synthesis: Prospects in visible light photocatalysis. Science 2014, 343, 1239176.

    Article  Google Scholar 

  3. Kormann, C.; Bahnemann, D. W.; Hoffmann, M. R. Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand. Environ. Sci. Technol. 1988, 22, 798–806.

    Article  CAS  Google Scholar 

  4. Chen, L.; Wang, L.; Wan, Y. Y.; Zhang, Y.; Qi, Z. M.; Wu, X. J.; Xu, H. X. Acetylene and diacetylene functionalized covalent triazine frameworks as metal-free photocatalysts for hydrogen peroxide production: A new two-electron water oxidation pathway. Adv. Mater. 2020, 32, 1904433.

    Article  CAS  Google Scholar 

  5. Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.

    Article  CAS  Google Scholar 

  6. Hou, H. L.; Zeng, X. K.; Zhang, X. W. Production of hydrogen peroxide by photocatalytic processes. Angew. Chem., Int. Ed. 2020, 59, 17356–17376.

    Article  CAS  Google Scholar 

  7. Zhang, W.; He, H. L.; Li, H. Z.; Duan, L. L.; Zu, L. H.; Zhai, Y. P.; Li, W.; Wang, L. Z.; Fu, H. G.; Zhao, D. Y. Visible-light responsive TiO2-based materials for efficient solar energy utilization. Adv. Energy Mater. 2021, 11, 2003303.

    Article  CAS  Google Scholar 

  8. Xiao, Y. T.; Guo, S. E.; Tian, G. H.; Jiang, B. J.; Ren, Z. Y.; Tian, C. G.; Li, W.; Fu, H. G. Synergetic enhancement of surface reactions and charge separation over holey C3N4/TiO2 2D heterojunctions. Sci. Bull. 2021, 66, 275–283.

    Article  CAS  Google Scholar 

  9. Zhang, W.; He, H. L.; Tian, Y.; Li, H. Z.; Lan, K.; Zu, L. H.; Xia, Y.; Duan, L. L.; Li, W.; Zhao, D. Y. Defect-engineering of mesoporous TiO2 microspheres with phase junctions for efficient visible-light driven fuel production. Nano Energy 2019, 66, 104113.

    Article  CAS  Google Scholar 

  10. Naldoni, A.; Riboni, F.; Guler, U.; Boltasseva, A.; Shalaev, V. M.; Kildishev, A. V. Solar-powered plasmon-enhanced heterogeneous catalysis. Nanophotonics 2016, 5, 112–133.

    Article  CAS  Google Scholar 

  11. Massicotte, M.; Schmidt, P.; Vialla, F.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L. Photo-thermionic effect in vertical graphene heterostructures. Nat. Commun. 2016, 7, 12174.

    Article  CAS  Google Scholar 

  12. Wu, S. F.; Wang, L.; Lai, Y.; Shan, W. Y.; Aivazian, G.; Zhang, X.; Taniguchi, T.; Watanabe, K.; Xiao, D.; Dean, C. et al. Multiple hot-carrier collection in photo-excited graphene moiré superlattices. Sci. Adv. 2016, 2, e1600002.

    Article  Google Scholar 

  13. Urcuyo, R.; Duong, D. L.; Sailer, P.; Burghard, M.; Kern, K. Hot carrier extraction from multilayer graphene. Nano Lett. 2016, 16, 6761–6766.

    Article  CAS  Google Scholar 

  14. Li, T.; Luo, L.; Hupalo, M.; Zhang, J.; Tringides, M. C.; Schmalian, J.; Wang, J. Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene. Phys. Rev. Lett. 2012, 108, 167401.

    Article  CAS  Google Scholar 

  15. Gierz, I.; Petersen, J. C.; Mitrano, M.; Cacho, C.; Turcu, I. C. E.; Springate, E.; Stöhr, A.; Köhler, A.; Starke, U.; Cavalleri, A. Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nat. Mater. 2013, 12, 1119–1124.

    Article  CAS  Google Scholar 

  16. Dawlaty, J. M.; Shivaraman, S.; Chandrashekhar, M.; Rana, F.; Spencer, M. G. Measurement of ultrafast carrier dynamics in epitaxial graphene. Appl. Phys. Lett. 2008, 92, 042116.

    Article  Google Scholar 

  17. Zhang, W.; Tian, Y.; He, H. L.; Xu, L.; Li, W.; Zhao, D. Y. Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications. Natl. Sci. Rev. 2020, 7, 1702–1725.

    Article  CAS  Google Scholar 

  18. Hu, W.-Y.; Li, Q.-Y.; Zhai, G.-Y.; Lin, Y.-X.; Li, D.; He, X.-X.; Lin, X.; Xu, D.; Sun, L.-H.; Zhang, S.-N. et al. Facilitating hot electron injection from graphene to semiconductor by rectifying contact for vis-NIR-driven H2O2 production. Small 2022, 18, 2200885.

    Article  CAS  Google Scholar 

  19. Naldoni, A.; Montini, T.; Malara, F.; Mróz, M. M.; Beltram, A.; Virgili, T.; Boldrini, C. L.; Marelli, M.; Romero-Ocaña, I.; Delgado, J. J. et al. Hot electron collection on brookite nanorods lateral facets for plasmon-enhanced water oxidation. ACS Catal. 2017, 7, 1270–1278.

    Article  CAS  Google Scholar 

  20. Lee, Y. K.; Choi, H.; Lee, H.; Lee, C.; Choi, J. S.; Choi, C. G.; Hwang, E.; Park, J. Y. Hot carrier multiplication on graphene/TiO2 Schottky nanodiodes. Sci. Rep. 2016, 6, 27549.

    Article  CAS  Google Scholar 

  21. Bourikas, K.; Kordulis, C.; Lycourghiotis, A. Titanium dioxide (anatase and rutile): Surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts. Chem. Rev. 2014, 114, 9754–9823.

    Article  CAS  Google Scholar 

  22. Li, R. G.; Weng, Y. X.; Zhou, X.; Wang, X. L.; Mi, Y.; Chong, R. F.; Han, H. X.; Li, C. Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases. Energy Environ. Sci. 2015, 8, 2377–2382.

    Article  CAS  Google Scholar 

  23. Hu, W. Y.; Zhou, W.; Zhang, K. F.; Zhang, X. C.; Wang, L.; Jiang, B. J.; Tian, G. H.; Zhao, D. Y.; Fu, H. G. Facile strategy for controllable synthesis of stable mesoporous black TiO2 hollow spheres with efficient solar-driven photocatalytic hydrogen evolution. J. Mater. Chem. A 2016, 4, 7495–7502.

    Article  CAS  Google Scholar 

  24. Wang, F. X.; Wang, C.; Zhao, Y. J.; Liu, Z. C.; Chang, Z.; Fu, L. J.; Zhu, Y. S.; Wu, Y. P.; Zhao, D. Y. A quasi-solid-state Li-ion capacitor based on porous TiO2 hollow microspheres wrapped with graphene nanosheets. Small 2016, 12, 6207–6213.

    Article  CAS  Google Scholar 

  25. Gao, W.; Li, Y. F.; Zhao, J. T.; Zhang, Z.; Tang, W. W.; Wang, J.; Wu, Z. Y.; Li, Z. Y. Design and preparation of graphene/Fe2O3 nanocomposite as negative material for supercapacitor. Chem. Res. Chin. Univ., in press, https://doi.org/10.1007/s40242-022-1442-1.

  26. Lin, X.; Zhang, S. N.; Xu, D.; Zhang, J. J.; Lin, Y. X.; Zhai, G. Y.; Su, H.; Xue, Z. H.; Liu, X.; Antonietti, M. et al. Electrochemical activation of C−H by electron-deficient W2C nanocrystals for simultaneous alkoxylation and hydrogen evolution. Nat. Commun. 2021, 12, 3882.

    Article  CAS  Google Scholar 

  27. Zhang, K. X.; Su, H.; Wang, H. H.; Zhang, J. J.; Zhao, S. Y.; Lei, W. W.; Wei, X.; Li, X. H.; Chen, J. S. Atomic-scale Mott-Schottky heterojunctions of boron nitride monolayer and graphene as metalfree photocatalysts for artificial photosynthesis. Adv. Sci. 2018, 5, 1800062.

    Article  Google Scholar 

  28. Ruan, X. W.; Cui, X. Q.; Cui, Y.; Fan, X. F.; Li, Z. Y.; Xie, T. F.; Ba, K. K.; Jia, G. R.; Zhang, H. Y.; Zhang, L. et al. Favorable energy band alignment of TiO2 anatase/rutile heterophase homojunctions yields photocatalytic hydrogen evolution with quantum efficiency exceeding 45.6%. Adv. Energy Mater. 2022, 12, 2200298.

    Article  CAS  Google Scholar 

  29. Hu, G. L.; He, J. Y.; Li, Y. J. Application of graphdiyne and its analogues in photocatalysis and photoelectrochemistry. Chem. Res. Chin. Univ. 2021, 37, 1195–1212.

    Article  CAS  Google Scholar 

  30. Guo, J.; Zhang, Y.; Shi, L.; Zhu, Y. F.; Mideksa, M. F.; Hou, K.; Zhao, W. S.; Wang, D. W.; Zhao, M. T.; Zhang, X. R. et al. Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis. J. Am. Chem. Soc. 2017, 139, 17964–17972.

    Article  CAS  Google Scholar 

  31. Park, J. Y.; Kim, S. M.; Lee, H.; Nedrygailov, I. I. Hot-electron-mediated surface chemistry: Toward electronic control of catalytic activity. Acc. Chem. Res. 2015, 48, 2475–2483.

    Article  CAS  Google Scholar 

  32. Chen, Y. Z.; Li, Y. J.; Zhao, Y. D.; Zhou, H. Z.; Zhu, H. M. Highly efficient hot electron harvesting from graphene before electron-hole thermalization. Sci. Adv. 2019, 5, eaax9958.

    Article  CAS  Google Scholar 

  33. Wen, X. W.; Chen, H. L.; Wu, T. M.; Yu, Z. H.; Yang, Q. R.; Deng, J. W.; Liu, Z. T.; Guo, X.; Guan, J. X.; Zhang, X. et al. Ultrafast probes of electron-hole transitions between two atomic layers. Nat. Commun. 2018, 9, 2299.

    Article  Google Scholar 

  34. Williams, K. J.; Nelson, C. A.; Yan, X.; Li, L. S.; Zhu, X. Y. Hot electron injection from graphene quantum dots to TiO2. ACS Nano 2013, 7, 1388–1394.

    Article  CAS  Google Scholar 

  35. Fang, H. H.; Adjokatse, S.; Shao, S. Y.; Even, J.; Loi, M. A. Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites. Nat. Commun. 2018, 9, 243.

    Article  Google Scholar 

  36. Shiraishi, Y.; Takii, T.; Hagi, T.; Mori, S.; Kofuji, Y.; Kitagawa, Y.; Tanaka, S.; Ichikawa, S.; Hirai, T. Resorcinol-formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater. 2019, 18, 985–993.

    Article  CAS  Google Scholar 

  37. Hong, Y.; Cho, Y.; Go, E. M.; Sharma, P.; Cho, H.; Lee, B.; Lee, S. M.; Park, S. O.; Ko, M.; Kwak, S. K. et al. Unassisted photocatalytic H2O2 production under visible light by fluorinated polymer-TiO2 heterojunction. Chem. Eng. J. 2021, 418, 129346.

    Article  CAS  Google Scholar 

  38. Wang, H.; Sun, X. S.; Li, D. D.; Zhang, X. D.; Chen, S. C.; Shao, W.; Tian, Y. P.; Xie, Y. Boosting hot-electron generation: Exciton dissociation at the order-disorder interfaces in polymeric photocatalysts. J. Am. Chem. Soc. 2017, 139, 2468–2473.

    Article  CAS  Google Scholar 

  39. Yu, Q. Y.; Lin, X.; Li, X. H.; Chen, J. S. Photocatalytic stille cross-coupling on gold/g-C3N4 nano-heterojunction. Chem. Res. Chin. Univ. 2020, 36, 1013–1016.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21737002, 21931005, 21720102002, and 22071146), Shanghai Science and Technology Committee (Nos. 19JC1412600 and 20520711600), and the SJTU-MPI partner group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhao Li.

Electronic Supplementary Material

12274_2022_4624_MOESM1_ESM.pdf

Rapidly and mildly transferring anatase phase of graphene-activated TiO2 to rutile with elevated Schottky barrier: Facilitating interfacial hot electron injection for Vis-NIR driven photocatalysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Li, Q., Xu, D. et al. Rapidly and mildly transferring anatase phase of graphene-activated TiO2 to rutile with elevated Schottky barrier: Facilitating interfacial hot electron injection for Vis-NIR driven photocatalysis. Nano Res. 15, 10142–10147 (2022). https://doi.org/10.1007/s12274-022-4624-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4624-8

Keywords

Navigation