Skip to main content
Log in

Crystal phase engineering of electrocatalysts for energy conversions

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Crystal phase is an intrinsic structural parameter to determine the physicochemical properties and functionalities of materials. The unconventional phases of materials with distinct atomic arrangements from their thermodynamically stable phases have attracted enormous attention. Phase engineering has recently made fruitful achievements in electrocatalysis field to optimize the performance of various electrochemical reactions. In this review, theoretical and experimental advances made in phase engineering of electrocatalysts are summarized. First, we introduce basic understanding on crystal phases of catalysts to show the dialectical relationship between bulk phase and surface catalytic layer, and highlight the multiple functions of phase engineering in catalysis studies. We then describe phase-controlled synthesis of materials through various experimental methods such as wet-chemical method, phase transition, and template growth. As a focus, we discuss the wide usage of phase engineering strategy in different kinds of electrocatalytic materials, and particular emphasis is given to establishment of reasonable crystal phase-activity relationship. Finally, we propose several future directions for developing more desirable electrocatalysts by rational crystal phase design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 2015, 328, 36–42.

    Article  CAS  Google Scholar 

  2. Liang, J. S.; Ma, F.; Hwang, S.; Wang, X. X.; Sokolowski, J.; Li, Q.; Wu, G.; Su, D. Atomic arrangement engineering of metallic nanocrystals for energy-conversion electrocatalysis. Joule 2019, 3, 956–991.

    Article  CAS  Google Scholar 

  3. You, H.; Zhuo, Z. W.; Lu, X. F.; Liu, Y. W.; Guo, Y. B.; Wang, W. B.; Yang, H.; Wu, X. J.; Li, H. Q.; Zhai, T. Y. 1T′-MoTe2-based on-chip electrocatalytic microdevice: A platform to unravel oxidation-dependent electrocatalysis. CCS Chem. 2019, 1, 396–406.

    Article  CAS  Google Scholar 

  4. Bai, S.; Gao, C.; Low, J.; Xiong, Y. J. Crystal phase engineering on photocatalytic materials for energy and environmental applications. Nano Res. 2019, 12, 2031–2054.

    Article  CAS  Google Scholar 

  5. Sheng, B. B.; Cao, D. F.; Shou, H. W.; Moses, O. A.; Xu, W. J.; Xia, Y. J.; Zhou, Y. Z.; Wang, H. J.; Wan, P.; Zhu, S. et al. Support induced phase engineering toward superior electrocatalyst. Nano Res. 2022, 15, 1831–1837.

    Article  CAS  Google Scholar 

  6. Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 2016, 352, 73–76.

    Article  CAS  Google Scholar 

  7. Wu, Z. P.; Caracciolo, D. T.; Maswadeh, Y.; Wen, J. G.; Kong, Z. J.; Shan, S. Y.; Vargas, J. A.; Yan, S.; Hopkins, E.; Park, K. et al. Alloying-realloying enabled high durability for Pt-Pd-3d-transition metal nanoparticle fuel cell catalysts. Nat. Commun. 2021, 12, 859.

    Article  CAS  Google Scholar 

  8. Chen, X.; Yu, M.; Yan, Z. H.; Guo, W. Y.; Fan, G. L.; Ni, Y. X.; Liu, J. D.; Zhang, W.; Xie, W.; Cheng, F. Y. et al. Boosting electrocatalytic oxygen evolution by cation defect modulation via electrochemical etching. CCS Chem. 2021, 3, 675–685.

    Article  CAS  Google Scholar 

  9. Arandiyan, H.; Mofarah, S. S.; Sorrell, C. C.; Doustkhah, E.; Sajjadi, B.; Hao, D.; Wang, Y.; Sun, H. Y.; Ni, B. J.; Rezaei, M. et al. Defect engineering of oxide perovskites for catalysis and energy storage: Synthesis of chemistry and materials science. Chem. Soc. Rev. 2021, 50, 10116–10211.

    Article  CAS  Google Scholar 

  10. Liang, X.; Shi, L.; Liu, Y. P.; Chen, H.; Si, R.; Yan, W. S.; Zhang, Q.; Li, G. D.; Yang, L.; Zou, X. X. Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions. Angew. Chem., Int. Ed. 2019, 58, 7631–7635.

    Article  CAS  Google Scholar 

  11. Chen, X.; Wang, Q. C.; Cheng, Y. W.; Xing, H. L.; Li, J. Z.; Zhu, X. J.; Ma, L. B.; Li, Y. T.; Liu, D. M. S-doping triggers redox reactivities of both iron and lattice oxygen in FeOOH for low-cost and high-performance water oxidation. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202112674.

  12. Yan, B. L.; Liu, D. P.; Feng, X. L.; Shao, M. Z.; Zhang, Y. Ru nanoparticles supported on Co-embedded N-doped carbon nanotubes as efficient electrocatalysts for hydrogen evolution in basic media. Chem. Res. Chin. Univ. 2020, 36, 425–430.

    Article  CAS  Google Scholar 

  13. Yang, L.; Zhang, K. X.; Chen, H.; Shi, L.; Liang, X.; Wang, X. Y.; Liu, Y. P.; Feng, Q.; Liu, M. J.; Zou, X. X. An ultrathin two-dimensional iridium-based perovskite oxide electrocatalyst with highly efficient {001} facets for acidic water oxidation. J. Energy Chem. 2022, 66, 619–627.

    Article  CAS  Google Scholar 

  14. Xu, D. D.; Liu, X. L.; Lv, H.; Liu, Y.; Zhao, S. L.; Han, M.; Bao, J. C.; He, J.; Liu, B. Ultrathin palladium nanosheets with selectively controlled surface facets. Chem. Sci. 2018, 9, 4451–4455.

    Article  CAS  Google Scholar 

  15. Venkatesh, R.; Chakrabarty, P. K.; Siladitya, B.; Chatterjee, M.; Ganguli, D. Preparation of alumina fibre mats by a sol-gel spinning technique. Ceram. Int. 1999, 25, 539–543.

    Article  CAS  Google Scholar 

  16. Neuhaus, J.; Leitner, M.; Nicolaus, K.; Petry, W.; Hennion, B.; Hiess, A. Role of vibrational entropy in the stabilization of the high-temperature phases of iron. Phys. Rev. B 2014, 89, 184302.

    Article  Google Scholar 

  17. Liu, J. W.; Huang, J. T.; Niu, W. X.; Tan, C. L.; Zhang, H. Unconventional-phase crystalline materials constructed from multiscale building blocks. Chem. Rev. 2021, 121, 5830–5888.

    Article  CAS  Google Scholar 

  18. Li, W. B.; Qian, X. F.; Li, J. Phase transitions in 2D materials. Nat. Rev. Mater. 2021, 6, 829–846.

    Article  CAS  Google Scholar 

  19. Park, S.; Lee, Y. H.; Choi, S.; Seo, H.; Lee, M. Y.; Balamurugan, M.; Nam, K. T. Manganese oxide-based heterogeneous electrocatalysts for water oxidation. Energy Environ. Sci. 2020, 13, 2310–2340.

    Article  CAS  Google Scholar 

  20. Chen, H.; Zou, X. X. Intermetallic borides: Structures, synthesis and applications in electrocatalysis. Inorg. Chem. Front. 2020, 7, 2248–2264.

    Article  CAS  Google Scholar 

  21. Onishi, Y. The catalytic oxidation of hydrogen on titanium dioxide; anatase and rutile. Bull. Chem. Soc. Jan. 1971, 44, 912–915.

    Article  CAS  Google Scholar 

  22. Onishi, Y.; Hamamura, T. The catalytic oxidation of carbon monoxide on titanium dioxide; anatase and rutile. Bull. Chem. Soc. Jan. 1970, 43, 996–1000.

    Article  CAS  Google Scholar 

  23. Feng, Q. C.; Zhao, S.; Wang, Y.; Dong, J. C.; Chen, W. X.; He, D. S.; Wang, D. S.; Yang, J.; Zhu, Y. M.; Zhu, H. L. et al. Isolated single-atom pd sites in intermetallic nanostructures: High catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 2017, 139, 7294–7301.

    Article  CAS  Google Scholar 

  24. Lv, H.; Xu, D. D.; Kong, C. C.; Liang, Z. Z.; Zheng, H. Q.; Huang, Z. H.; Liu, B. Synthesis and crystal-phase engineering of mesoporous palladium-boron alloy nanoparticles. ACS Cent. Sci. 2020, 6, 2347–2353.

    Article  CAS  Google Scholar 

  25. Wang, X.; Xu, Q.; Li, M. R.; Shen, S.; Wang, X. L.; Wang, Y. C.; Feng, Z. C.; Shi, J. Y.; Han, H. X.; Li, C. Photocatalytic overall water splitting promoted by an α-β phase junction on Ga2O3. Angew. Chem., Int. Ed. 2012, 51, 13089–13092.

    Article  CAS  Google Scholar 

  26. Liu, L. C.; Corma, A. Structural transformations of solid electrocatalysts and photocatalysts. Nat. Rev. Chem. 2021, 5, 256–276.

    Article  CAS  Google Scholar 

  27. Jia, L.; Sun, M. Z.; Xu, J.; Zhao, X.; Zhou, R.; Pan, B. B.; Wang, L.; Han, N.; Huang, B. L.; Li, Y. G. Phase-dependent electrocatalytic CO2 reduction on Pd3Bi nanocrystals. Angew. Chem., Int. Ed. 2021, 60, 21741–21745.

    Article  CAS  Google Scholar 

  28. Wang, Z. K.; Wang, S. Y.; Ma, L. X.; Guo, Y. J.; Sun, J.; Zhang, N.; Jiang, R. B. Water-induced formation of Ni2P-Ni12P5 interfaces with superior electrocatalytic activity toward hydrogen evolution reaction. Small 2021, 17, 2006770.

    Article  CAS  Google Scholar 

  29. Chen, H.; Liang, X.; Liu, Y. P.; Ai, X.; Asefa, T.; Zou, X. X. Active site engineering in porous electrocatalysts. Adv. Mater. 2020, 32, 2002435.

    Article  Google Scholar 

  30. Si, J. J.; Yu, J. Q.; Shen, Y.; Zeng, M. Q.; Fu, L. Elemental 2D materials: Progress and perspectives toward unconventional structures. Small Struct. 2021, 2, 2000101.

    Article  CAS  Google Scholar 

  31. Yang, N. L.; Cheng, H. F.; Liu, X. Z.; Yun, Q. B.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z. C.; Chen, X. P.; Lu, Q. P. et al. Amorphous/crystalline hetero-phase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 2018, 30, 1803234.

    Article  Google Scholar 

  32. Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256.

    Article  CAS  Google Scholar 

  33. Ge, Y. Y.; Shi, Z. Y.; Tan, C. L.; Chen, Y.; Cheng, H. F.; He, Q. Y.; Zhang, H. Two-dimensional nanomaterials with unconventional phases. Chem 2020, 6, 1237–1253.

    Article  CAS  Google Scholar 

  34. Janssen, A.; Nguyen, Q. N.; Xia, Y. N. Colloidal metal nanocrystals with metastable crystal structures. Angew. Chem., Int. Ed. 2021, 60, 12192–12203.

    Article  CAS  Google Scholar 

  35. Zhao, Z. J.; Liu, S. H.; Zha, S.; Cheng, D. F.; Studt, F.; Henkelman, G.; Gong, J. L. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 2019, 4, 792–804.

    Article  Google Scholar 

  36. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  37. Song, C. W.; Lim, J.; Bae, H. B.; Chung, S. Y. Discovery of crystal structure-stability correlation in iridates for oxygen evolution electrocatalysis in acid. Energy Environ. Sci. 2020, 13, 4178–4188.

    Article  CAS  Google Scholar 

  38. Geng, X. M.; Sun, W. W.; Wu, W.; Chen, B.; Al-Hilo, A.; Benamara, M.; Zhu, H. L.; Watanabe, F.; Cui, J. B.; Chen, T. P. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 2016, 7, 10672.

    Article  CAS  Google Scholar 

  39. Yao, Y. C.; He, D. S.; Lin, Y.; Feng, X. Q.; Wang, X.; Yin, P. Q.; Hong, X.; Zhou, G.; Wu, Y. E.; Li, Y. D. Modulating fcc and hcp ruthenium on the surface of palladium-copper alloy through tunable lattice mismatch. Angew. Chem., Int. Ed. 2016, 55, 5501–5505.

    Article  CAS  Google Scholar 

  40. Fan, Z. L.; Ji, Y. J.; Shao, Q.; Geng, S. Z.; Zhu, W. X.; Liu, Y.; Liao, F.; Hu, Z. W.; Chang, Y. C.; Pao, C. W. et al. Extraordinary acidic oxygen evolution on new phase 3R-iridium oxide. Joule 2021, 5, 3221–3234.

    Article  CAS  Google Scholar 

  41. Feng, Y.; Gong, S. J.; Du, E. W.; Chen, X. F.; Qi, R. J.; Yu, K.; Zhu, Z. Q. 3R TaS2 surpasses the corresponding 1T and 2H phases for the hydrogen evolution reaction. J. Phys. Chem. C 2018, 122, 2382–2390.

    Article  CAS  Google Scholar 

  42. Chen, H.; Zhang, B.; Liang, X.; Zou, X. X. Light alloying elementregulated noble metal catalysts for energy-related applications. Chin. J. Catal. 2022, 43, 611–635.

    Article  CAS  Google Scholar 

  43. Yan, G. B.; Lian, Y. B.; Gu, Y. D.; Yang, C.; Sun, H.; Mu, Q. Q.; Li, Q.; Zhu, W.; Zheng, X. S.; Chen, M. Z. et al. Phase and morphology transformation of MnO2 induced by ionic liquids toward efficient water oxidation. ACS Catal. 2018, 8, 10137–10147.

    Article  CAS  Google Scholar 

  44. Strickler, A. L.; Higgins, D.; Jaramillo, T. F. Crystalline strontium iridate particle catalysts for enhanced oxygen evolution in acid. ACS Appl. Energy Mater. 2019, 2, 5490–5498.

    Article  CAS  Google Scholar 

  45. Li, Q.; Wu, J. B.; Wu, T.; Jin, H. R.; Zhang, N.; Li, J.; Liang, W. X.; Liu, M. L.; Huang, L.; Zhou, J. Phase engineering of atomically thin perovskite oxide for highly active oxygen evolution. Adv. Funct. Mater. 2021, 31, 2102002.

    Article  CAS  Google Scholar 

  46. Li, Z. Y.; Xie, Z. B.; Chen, H.; Liang, X.; Ai, X.; Yuan, L.; Li, X. T.; Zou, X. X. Realization of interstitial boron ordering and optimal near-surface electronic structure in Pd-B alloy electrocatalysts. Chem. Eng. J. 2021, 419, 129568.

    Article  CAS  Google Scholar 

  47. Zhao, T. H.; Xiao, D. D.; Chen, Y.; Tang, X.; Gong, M. X.; Deng, S. F.; Liu, X. P.; Ma, J. M.; Zhao, X.; Wang, D. L. Boosting alkaline hydrogen electrooxidation on an unconventional fcc-Ru polycrystal. J. Energy Chem. 2021, 61, 15–22.

    Article  CAS  Google Scholar 

  48. Li, Z. Y.; Ai, X.; Chen, H.; Liang, X.; Li, X. T.; Wang, D.; Zou, X. X. Asymmetrically strained hcp rhodium sublattice stabilized by 1D covalent boron chains as an efficient electrocatalyst. Chem. Commun. 2021, 57, 5075–5078.

    Article  CAS  Google Scholar 

  49. Zhao, M.; Chen, Z. T.; Lyu, Z.; Hood, Z. D.; Xie, M. H.; Vara, M.; Chi, M. F.; Xia, Y. N. Ru octahedral nanocrystals with a face-centered cubic structure, {111} facets, thermal stability up to 400 °C, and enhanced catalytic activity. J. Am. Chem. Soc. 2019, 141, 7028–7036.

    Article  CAS  Google Scholar 

  50. Zou, X.; Wang, L. N.; Ai, X.; Chen, H.; Zou, X. X. Crystal phase-dependent electrocatalytic hydrogen evolution performance of ruthenium-boron intermetallics. Chem. Commun. 2020, 56, 3061–3064.

    Article  CAS  Google Scholar 

  51. Ai, X.; Zou, X.; Chen, H.; Su, Y. T.; Feng, X. L.; Li, Q. J.; Liu, Y. P.; Zhang, Y.; Zou, X. X. Transition-metal-boron intermetallics with strong interatomic d-sp orbital hybridization for highperformance electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 3961–3965.

    Article  CAS  Google Scholar 

  52. Wang, Y. X.; Li, C. Y.; Fan, Z. X.; Chen, Y.; Li, X.; Cao, L.; Wang, C. H.; Wang, L.; Su, D.; Zhang, H. et al. Undercoordinated active sites on 4H gold nanostructures for CO2 reduction. Nano Lett. 2020, 20, 8074–8080.

    Article  CAS  Google Scholar 

  53. Guo, F. F.; Wu, Y. Y.; Ai, X.; Chen, H.; Li, G. D.; Chen, W.; Zou, X. X. A class of metal diboride electrocatalysts synthesized by a molten salt-assisted reaction for the hydrogen evolution reaction. Chem. Commun. 2019, 55, 8627–8630.

    Article  CAS  Google Scholar 

  54. Lu, S. Y.; Liang, J. Z.; Long, H. W.; Li, H. X.; Zhou, X. C.; He, Z.; Chen, Y.; Sun, H. Y.; Fan, Z. X.; Zhang, H. Crystal phase control of gold nanomaterials by wet-chemical synthesis. Acc. Chem. Res. 2020, 53, 2106–2118.

    Article  CAS  Google Scholar 

  55. Kusada, K.; Kobayashi, H.; Yamamoto, T.; Matsumura, S.; Sumi, N.; Sato, K.; Nagaoka, K.; Kubota, Y.; Kitagawa, H. Discovery of face-centered-cubic ruthenium nanoparticles: Facile size-controlled synthesis using the chemical reduction method. J. Am. Chem. Soc. 2013, 135, 5493–5496.

    Article  CAS  Google Scholar 

  56. Wu, M. H.; Zhan, J.; Wu, K.; Li, Z.; Wang, L.; Geng, B. J.; Wang, L. J.; Pan, D. Y. Metallic 1T MoS2 nanosheet arrays vertically grown on activated carbon fiber cloth for enhanced Li-ion storage performance. J. Mater. Chem. A 2017, 5, 14061–14069.

    Article  CAS  Google Scholar 

  57. Chen, Y.; Fan, Z. X.; Luo, Z. M.; Liu, X. Z.; Lai, Z. C.; Li, B.; Zong, Y.; Gu, L.; Zhang, H. High-yield synthesis of crystal-phase-heterostructured 4H/fcc Au@Pd core-shell nanorods for electrocatalytic ethanol oxidation. Adv. Mater. 2017, 29, 1701331.

    Article  Google Scholar 

  58. Liu, Q.; Shang, Q. C.; Khalil, A.; Fang, Q.; Chen, S. M.; He, Q.; Xiang, T.; Liu, D. B.; Zhang, Q.; Luo, Y. et al. In situ integration of a metallic 1T-MoS2/CdS heterostructure as a means to promote visible-light-driven photocatalytic hydrogen evolution. ChemCatChem 2016, 8, 2614–2619.

    Article  CAS  Google Scholar 

  59. Wu, C. Q.; Fang, Q.; Liu, Q.; Liu, D. B.; Wang, C. D.; Xiang, T.; Khalil, A.; Chen, S. M.; Song, L. Engineering interfacial chargetransfer by phase transition realizing enhanced photocatalytic hydrogen evolution activity. Inorg. Chem. Front. 2017, 4, 663–667.

    Article  CAS  Google Scholar 

  60. He, D. P.; Ooka, H.; Kim, Y.; Li, Y. M.; Jin, F. M.; Kim, S. H.; Nakamura, R. Atomic-scale evidence for highly selective electrocatalytic N—N coupling on metallic MoS2. Proc. Natl. Acad. Sci. USA 2020, 117, 31631–31638.

    Article  CAS  Google Scholar 

  61. Chen, P.; Pai, W. W.; Chan, Y. H.; Sun, W. L.; Xu, C. Z.; Lin, D. S.; Chou, M. Y.; Fedorov, A. V.; Chiang, T. C. Large quantum-spin-Hall gap in single-layer 1T′ WSe2. Nat. Commun. 2018, 9, 2003.

    Article  CAS  Google Scholar 

  62. Yang, D.; Hu, X. Z.; Zhuang, M. H.; Ding, Y.; Zhou, S. S.; Li, A. J.; Yu, Y. W.; Li, H. Q.; Luo, Z. T.; Gan, L. et al. Inversion symmetry broken 2D 3R-MoTe2. Adv. Funct. Mater. 2018, 28, 1800785.

    Article  Google Scholar 

  63. Yoo, Y.; DeGregorio, Z. P.; Su, Y.; Koester, S. J.; Johns, J. E. Inplane 2H-1T′ MoTe2 homojunctions synthesized by flux-controlled phase engineering. Adv. Mater. 2017, 29, 1605461.

    Article  Google Scholar 

  64. Liu, L. N.; Wu, J. X.; Wu, L. Y.; Ye, M.; Liu, X. Z.; Wang, Q.; Hou, S. Y.; Lu, P. F.; Sun, L. F.; Zheng, J. Y. et al. Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108–1114.

    Article  CAS  Google Scholar 

  65. Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core—shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

    Article  CAS  Google Scholar 

  66. Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D. H.; Sung, H. J.; Kan, M.; Kang, H.; Hwang, J. Y.; Kim, S. W.; Yang, H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 2015, 11, 482–486.

    Article  CAS  Google Scholar 

  67. Guo, Q. X.; Zhao, Y. S.; Mao, W. L.; Wang, Z. W.; Xiong, Y. J.; Xia, Y. N. Cubic to tetragonal phase transformation in cold-compressed Pd nanocubes. Nano Lett. 2008, 8, 972–975.

    Article  CAS  Google Scholar 

  68. Sun, Y. G.; Yang, W. G.; Ren, Y.; Wang, L.; Lei, C. H. Multiple-step phase transformation in silver nanoplates under high pressure. Small 2011, 7, 606–611.

    Article  CAS  Google Scholar 

  69. Yan, M. L.; Mao, K.; Cui, P. X.; Chen, C.; Zhao, J.; Wang, X. Z.; Yang, L. J.; Yang, H.; Wu, Q.; Hu, Z. In situ construction of porous hierarchical (Ni3−xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 328–334.

    Article  CAS  Google Scholar 

  70. Fan, Z. X.; Zhang, H. Template synthesis of noble metal nanocrystals with unusual crystal structures and their catalytic applications. Acc. Chem. Res. 2016, 49, 2841–2850.

    Article  CAS  Google Scholar 

  71. Fan, Z. X.; Huang, X.; Han, Y.; Bosman, M.; Wang, Q. X.; Zhu, Y. H.; Liu, Q.; Li, B.; Zeng, Z. Y.; Wu, J. et al. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nat. Commun. 2015, 6, 6571.

    Article  CAS  Google Scholar 

  72. Fan, Z. X.; Bosman, M.; Huang, X.; Huang, D.; Yu, Y.; Ong, K. P.; Akimov, Y. A.; Wu, L.; Li, B.; Wu, J. et al. Stabilization of 4H hexagonal phase in gold nanoribbons. Nat. Commun. 2015, 6, 7684.

    Article  CAS  Google Scholar 

  73. Fan, Z. X.; Zhu, Y. H.; Huang, X.; Han, Y.; Wang, Q. X.; Liu, Q.; Huang, Y.; Gan, C. L.; Zhang, H. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core—shell nanoplates from hexagonal-close-packed au square sheets. Angew. Chem., Int. Ed. 2015, 54, 5672–5676.

    Article  CAS  Google Scholar 

  74. Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

    Article  CAS  Google Scholar 

  75. Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 2011, 50, 11093–11097.

    Article  CAS  Google Scholar 

  76. Kim, S.; Song, S.; Park, J.; Yu, H. S.; Cho, S.; Kim, D.; Baik, J.; Choe, D. H.; Chang, K. J.; Lee, Y. H. et al. Long-range lattice engineering of MoTe2 by a 2D electride. Nano Lett. 2017, 17, 3363–3368.

    Article  CAS  Google Scholar 

  77. Fan, Z. X.; Chen, Y.; Zhu, Y. H.; Wang, J.; Li, B.; Zong, Y.; Han, Y.; Zhang, H. Epitaxial growth of unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures on 4H Au nanoribbons. Chem. Sci. 2017, 8, 795–799.

    Article  CAS  Google Scholar 

  78. Xia, X. H.; Wang, Y.; Ruditskiy, A.; Xia, Y. N. 25th Anniversary article: Galvanic replacement: A simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 2013, 25, 6313–6333.

    Article  CAS  Google Scholar 

  79. Chakraborty, I.; Shirodkar, S. N.; Gohil, S.; Waghmare, U. V.; Ayyub, P. A stable, quasi-2D modification of silver: Optical, electronic, vibrational and mechanical properties, and first principles calculations. J. Phys. Condens. Matter 2013, 26, 025402.

    Article  Google Scholar 

  80. Fan, Z. X.; Zhang, H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem. Soc. Rev. 2016, 45, 63–82.

    Article  CAS  Google Scholar 

  81. Joo, S. H.; Park, J. Y.; Renzas, J. R.; Butcher, D. R.; Huang, W. Y.; Somorjai, G. A. Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation. Nano Lett. 2010, 10, 2709–2713.

    Article  CAS  Google Scholar 

  82. Zhao, M.; Xia, Y. N. Crystal-phase and surface-structure engineering of ruthenium nanocrystals. Nat. Rev. Mater. 2020, 5, 440–459.

    Article  CAS  Google Scholar 

  83. Zhao, M.; Xu, L.; Vara, M.; Elnabawy, A. O.; Gilroy, K. D.; Hood, Z. D.; Zhou, S.; Figueroa-Cosme, L.; Chi, M. F.; Mavrikakis, M. et al. Synthesis of Ru icosahedral nanocages with a face-centered-cubic structure and evaluation of their catalytic properties. ACS Catal. 2018, 8, 6948–6960.

    Article  CAS  Google Scholar 

  84. Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 2016, 138, 16174–16181.

    Article  CAS  Google Scholar 

  85. Lu, Q. P.; Wang, A. L.; Cheng, H. F.; Gong, Y.; Yun, Q. B.; Yang, N. L.; Li, B.; Chen, B.; Zhang, Q. H.; Zong, Y. et al. Synthesis of hierarchical 4H/fcc Ru nanotubes for highly efficient hydrogen evolution in alkaline media. Small 2018, 14, 1801090.

    Article  Google Scholar 

  86. Yang, Y. J.; Yu, Y. H.; Li, J.; Chen, Q. R.; Du, Y. L.; Rao, P.; Li, R. S.; Jia, C. M.; Kang, Z. Y.; Deng, P. L. et al. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 2021, 13, 160.

    Article  CAS  Google Scholar 

  87. Huang, X.; Li, S. Z.; Huang, Y. Z.; Wu, S. X.; Zhou, X. Z.; Li, S. Z.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2011, 2, 292.

    Article  Google Scholar 

  88. Fan, Z. X.; Huang, X.; Chen, Y.; Huang, W.; Zhang, H. Facile synthesis of gold nanomaterials with unusual crystal structures. Nat. Protoc. 2017, 12, 2367–2376.

    Article  CAS  Google Scholar 

  89. Fan, Z. X.; Bosman, M.; Huang, Z. Q.; Chen, Y.; Ling, C. Y.; Wu, L.; Akimov, Y. A.; Laskowski, R.; Chen, B.; Ercius, P. et al. Heterophase fcc-2H-fcc gold nanorods. Nat. Commun. 2020, 11, 3293.

    Article  CAS  Google Scholar 

  90. Yu, D.; Gao, L.; Sun, T. L.; Guo, J. C.; Yuan, Y. L.; Zhang, J. W.; Li, M. F.; Li, X. X.; Liu, M. C.; Ma, C. et al. Strain-stabilized metastable face-centered tetragonal gold overlayer for efficient CO2 electroreduction. Nano Lett. 2021, 21, 1003–1010.

    Article  CAS  Google Scholar 

  91. Lu, Q. P.; Wang, A. L.; Gong, Y.; Hao, W.; Cheng, H. F.; Chen, J. Z.; Li, B.; Yang, N. L.; Niu, W. X.; Wang, J. et al. Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires. Nat. Chem. 2018, 10, 456–461.

    Article  CAS  Google Scholar 

  92. Chen, Y.; Fan, Z. X.; Wang, J.; Ling, C. Y.; Niu, W. X.; Huang, Z. Q.; Liu, G. G.; Chen, B.; Lai, Z. C.; Liu, X. Z. et al. Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: A crystal phase-dependent study. J. Am. Chem. Soc. 2020, 142, 12760–12766.

    Article  CAS  Google Scholar 

  93. Zhang, Q.; Kusada, K.; Wu, D. S.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Selective control of fcc and hcp crystal structures in Au-Ru solid-solution alloy nanoparticles. Nat. Commun. 2018, 9, 510.

    Article  Google Scholar 

  94. Cao, Z. M.; Chen, Q. L.; Zhang, J. W.; Li, H. Q.; Jiang, Y. Q.; Shen, S. Y.; Fu, G.; Lu, B. A.; Xie, Z. X.; Zheng, L. S. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat. Commun. 2017, 8, 15131.

    Article  Google Scholar 

  95. Fan, Z. X.; Luo, Z. M.; Huang, X.; Li, B.; Chen, Y.; Wang, J.; Hu, Y. L.; Zhang, H. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 1414–1419.

    Article  CAS  Google Scholar 

  96. Qiu, Y.; Xin, L.; Li, Y. W.; McCrum, I. T.; Guo, F. M.; Ma, T.; Ren, Y.; Liu, Q.; Zhou, L.; Gu, S. et al. Bcc-phased PdCu alloy as a highly active electrocatalyst for hydrogen oxidation in alkaline electrolytes. J. Am. Chem. Soc. 2018, 140, 16580–16588.

    Article  CAS  Google Scholar 

  97. Wang, C. H.; Yang, H. C.; Zhang, Y. J.; Wang, Q. B. NiFe alloy nanoparticles with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity. Angew. Chem., Int. Ed. 2019, 58, 6099–6103.

    Article  CAS  Google Scholar 

  98. Kim, J.; Lee, Y.; Sun, S. H. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J. Am. Chem. Soc. 2010, 132, 4996–4997.

    Article  CAS  Google Scholar 

  99. Cui, Z. M.; Li, L. J.; Manthiram, A.; Goodenough, J. B. Enhanced cycling stability of hybrid Li-air batteries enabled by ordered Pd3Fe intermetallic electrocatalyst. J. Am. Chem. Soc. 2015, 137, 7278–7281.

    Article  CAS  Google Scholar 

  100. Jiang, K. Z.; Wang, P. T.; Guo, S. J.; Zhang, X.; Shen, X.; Lu, G.; Su, D.; Huang, X. Q. Ordered PdCu-based nanoparticles as bifunctional oxygen-reduction and ethanol-oxidation electrocatalysts. Angew. Chem., Int. Ed. 2016, 55, 9030–9035.

    Article  CAS  Google Scholar 

  101. Zhou, M.; Guo, J. N.; Zhao, B.; Li, C.; Zhang, L. H.; Fang, J. Y. Improvement of oxygen reduction performance in alkaline media by tuning phase structure of Pd-Bi nanocatalysts. J. Am. Chem. Soc. 2021, 143, 15891–15897.

    Article  CAS  Google Scholar 

  102. Lv, H.; Qin, H. Y.; Ariga, K.; Yamauchi, Y.; Liu, B. A general concurrent template strategy for ordered mesoporous intermetallic nanoparticles with controllable catalytic performance. Angew. Chem., Int. Ed. 2022, 61, e202116179.

    Article  CAS  Google Scholar 

  103. Yin, X. M.; Tang, C. S.; Zheng, Y.; Gao, J.; Wu, J.; Zhang, H.; Chhowalla, M.; Chen, W.; Wee, A. T. S. Recent developments in 2D transition metal dichalcogenides: Phase transition and applications of the (quasi-)metallic phases. Chem. Soc. Rev. 2021, 50, 10087–10115.

    Article  CAS  Google Scholar 

  104. Zhang, X.; Jia, F. F.; Song, S. X. Recent advances in structural engineering of molybdenum disulfide for electrocatalytic hydrogen evolution reaction. Chem. Eng. J. 2021, 405, 127013.

    Article  CAS  Google Scholar 

  105. Wang, H. T.; Lu, Z. Y.; Kong, D. S.; Sun, J.; Hymel, T. M.; Cui, Y. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 2014, 8, 4940–4947.

    Article  CAS  Google Scholar 

  106. Chung, D. Y.; Park, S. K.; Chung, Y. H.; Yu, S. H.; Lim, D. H.; Jung, N.; Ham, H. C.; Park, H. Y.; Piao, Y.; Yoo, S. J. et al. Edge-exposed MoS2 nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction. Nanoscale 2014, 6, 2131–2136.

    Article  CAS  Google Scholar 

  107. Wang, D. Z.; Zhang, X. Y.; Bao, S. Y.; Zhang, Z. T.; Fei, H.; Wu, Z. Z. Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A 2017, 5, 2681–2688.

    Article  CAS  Google Scholar 

  108. Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.

    Article  CAS  Google Scholar 

  109. Wang, H. M.; Li, C. H.; Fang, P. F.; Zhang, Z. L.; Zhang, J. Z. Synthesis, properties, and optoelectronic applications of two-dimensional MoS2 and MoS2-based heterostructures. Chem. Soc. Rev. 2018, 47, 6101–6127.

    Article  CAS  Google Scholar 

  110. Wang, X. S.; Feng, H. B.; Wu, Y. M.; Jiao, L. Y. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 2013, 135, 5304–5307.

    Article  CAS  Google Scholar 

  111. Chang, K.; Hai, X.; Pang, H.; Zhang, H. B.; Shi, L.; Liu, G. G.; Liu, H. M.; Zhao, G. X.; Li, M.; Ye, J. H. Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 2016, 28, 10033–10041.

    Article  CAS  Google Scholar 

  112. Sokolikova, M. S.; Mattevi, C. Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chem. Soc. Rev. 2020, 49, 3952–3980.

    Article  CAS  Google Scholar 

  113. Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

    Article  CAS  Google Scholar 

  114. Lin, L. X.; Sherrell, P.; Liu, Y. Q.; Lei, W.; Zhang, S. W.; Zhang, H. J.; Wallace, G. G.; Chen, J. Engineered 2D transition metal dichalcogenides-a vision of viable hydrogen evolution reaction catalysis. Adv. Energy Mater. 2020, 10, 1903870.

    Article  CAS  Google Scholar 

  115. Tang, Q.; Jiang, D. E. Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal. 2016, 6, 4953–4961.

    Article  CAS  Google Scholar 

  116. Yu, Y. F.; Nam, G. H.; He, Q. Y.; Wu, X. J.; Zhang, K.; Yang, Z. Z.; Chen, J. Z.; Ma, Q. L.; Zhao, M. T.; Liu, Z. Q. et al. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nat. Chem. 2018, 10, 638–643.

    Article  CAS  Google Scholar 

  117. Suryanto, B. H. R.; Wang, D. B.; Azofra, L. M.; Harb, M.; Cavallo, L.; Jalili, R.; Mitchell, D. R. G.; Chatti, M.; MacFarlane, D. R. MoS2 polymorphic engineering enhances selectivity in the electrochemical reduction of nitrogen to ammonia. ACS Energy Lett. 2019, 4, 430–435.

    Article  CAS  Google Scholar 

  118. Zhang, L.; Ji, X. Q.; Ren, X.; Ma, Y. J.; Shi, X. F.; Tian, Z. Q.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.

    Article  Google Scholar 

  119. Lin, G. X.; Ju, Q. J.; Guo, X. W.; Zhao, W.; Adimi, S.; Ye, J. Y.; Bi, Q. Y.; Wang, J. C.; Yang, M. H.; Huang, F. Q. Intrinsic electron localization of metastable MoS2 boosts electrocatalytic nitrogen reduction to ammonia. Adv. Mater. 2021, 33, 2007509.

    Article  CAS  Google Scholar 

  120. Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

    Article  CAS  Google Scholar 

  121. Sokolikova, M. S.; Sherrell, P. C.; Palczynski, P.; Bemmer, V. L.; Mattevi, C. Direct solution-phase synthesis of 1T′ WSe2 nanosheets. Nat. Commun. 2019, 10, 712.

    Article  CAS  Google Scholar 

  122. Liu, Z. Q.; Nie, K. K.; Qu, X. Y.; Li, X. H.; Li, B. J.; Yuan, Y. L.; Chong, S. K.; Liu, P.; Li, Y. G.; Yin, Z. Y. et al. General bottom-up colloidal synthesis of nano-monolayer transition-metal dichalcogenides with high 1T′-phase purity. J. Am. Chem. Soc. 2022, 144, 4863–4873.

    Article  CAS  Google Scholar 

  123. Lai, Z. C.; Yao, Y.; Li, S. Y.; Ma, L.; Zhang, Q. H.; Ge, Y. Y.; Zhai, W.; Chi, B. L.; Chen, B.; Li, L. J. et al. Salt-assisted 2H-to-1T′ phase transformation of transition metal dichalcogenides. Adv. Mater. 2022, 34, 2201194.

    Article  CAS  Google Scholar 

  124. Zheng, Y. R.; Wu, P.; Gao, M. R.; Zhang, X. L.; Gao, F. Y.; Ju, H. X.; Wu, R.; Gao, Q.; You, R.; Huang, W. X. et al. Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nat. Commun. 2018, 9, 2533.

    Article  Google Scholar 

  125. Zhao, Y. M.; Cong, H. J.; Li, P.; Wu, D. A.; Chen, S. L.; Luo, W. Hexagonal RuSe2 nanosheets for highly efficient hydrogen evolution electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 7013–7017.

    Article  CAS  Google Scholar 

  126. Kwak, I. H.; Kwon, I. S.; Debela, T. T.; Abbas, H. G.; Park, Y. C.; Seo, J.; Ahn, J. P.; Lee, J. H.; Park, J.; Kang, H. S. Phase evolution of Re1−xMoxSe2 alloy nanosheets and their enhanced catalytic activity toward hydrogen evolution reaction. ACS Nano 2020, 14, 11995–12005.

    Article  CAS  Google Scholar 

  127. Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

    Article  CAS  Google Scholar 

  128. Sun, L.; Gao, M. Y.; Jing, Z. X.; Cheng, Z. Y.; Zheng, D. H.; Xu, H. Z.; Zhou, Q. N.; Lin, J. J. 1T-phase enriched P doped WS2 nanosphere for highly efficient electrochemical hydrogen evolution reaction. Chem. Eng. J. 2022, 429, 132187.

    Article  CAS  Google Scholar 

  129. Zhang, Y.; Zhou, Q.; Zhu, J. X.; Yan, Q. Y.; Dou, S. X.; Sun, W. P. Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv. Funct. Mater. 2017, 27, 1702317.

    Article  Google Scholar 

  130. Maurya, O.; Khaladkar, S.; Horn, M. R.; Sinha, B.; Deshmukh, R.; Wang, H. X.; Kim, T.; Dubal, D. P.; Kalekar, A. Emergence of Ni-based chalcogenides (S and Se) for clean energy conversion and storage. Small 2021, 17, 2100361.

    Article  CAS  Google Scholar 

  131. Chen, X. Q.; Yang, J. P.; Wu, T.; Li, L.; Luo, W.; Jiang, W.; Wang, L. J. Nanostructured binary copper chalcogenides: Synthesis strategies and common applications. Nanoscale 2018, 10, 15130–15163.

    Article  CAS  Google Scholar 

  132. Siegmund, D.; Blanc, N.; Smialkowski, M.; Tschulik, K.; Apfel, U. P. Metal-rich chalcogenides for electrocatalytic hydrogen evolution: Activity of electrodes and bulk materials. ChemElectroChem 2020, 7, 1514–1527.

    Article  CAS  Google Scholar 

  133. Jiang, N.; Tang, Q.; Sheng, M. L.; You, B.; Jiang, D. E.; Sun, Y. J. Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: A case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catal. Sci. Technol. 2016, 6, 1077–1084.

    Article  CAS  Google Scholar 

  134. Wu, Y. Y.; Li, G. D.; Liu, Y. P.; Yang, L.; Lian, X. R.; Asefa, T.; Zou, X. X. Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni3S2-based electrocatalyst. Adv. Funct. Mater. 2016, 26, 4839–4847.

    Article  CAS  Google Scholar 

  135. Wu, Y. Y.; Liu, Y. P.; Li, G. D.; Zou, X.; Lian, X. R.; Wang, D. J.; Sun, L.; Asefa, T.; Zou, X. X. Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3−xS4 coupled Ni3S2 nanosheet arrays. Nano Energy 2017, 35, 161–170.

    Article  CAS  Google Scholar 

  136. Zou, X.; Liu, Y. P.; Li, G. D.; Wu, Y. Y.; Liu, D. P.; Li, W.; Li, H. W.; Wang, D. J.; Zhang, Y.; Zou, X. X. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 2017, 29, 1700404.

    Article  Google Scholar 

  137. Liu, S. L.; Zhang, Z. S.; Bao, J. C.; Lan, Y. Q.; Tu, W. W.; Han, M.; Dai, Z. H. Controllable synthesis of tetragonal and cubic phase Cu2Se nanowires assembled by small nanocubes and their electrocatalytic performance for oxygen reduction reaction. J. Phys. Chem. C 2013, 117, 15164–15173.

    Article  CAS  Google Scholar 

  138. Fan, M. H.; Gao, R. Q.; Zou, Y. C.; Wang, D. J.; Bai, N.; Li, G. D.; Zou, X. X. An efficient nanostructured copper(I) sulfide-based hydrogen evolution electrocatalyst at neutral pH. Electrochim. Acta 2016, 215, 366–373.

    Article  CAS  Google Scholar 

  139. Polavarapu, L.; Mourdikoudis, S.; Pastoriza-Santos, I.; Pérez-Juste, J. Nanocrystal engineering of noble metals and metal chalcogenides: Controlling the morphology, composition and crystallinity. CrystEngComm 2015, 17, 3727–3762.

    Article  CAS  Google Scholar 

  140. Kempt, R.; Kuc, A.; Heine, T. Two-dimensional noble-metal chalcogenides and phosphochalcogenides. Angew. Chem., Int. Ed. 2020, 59, 9242–9254.

    Article  CAS  Google Scholar 

  141. Yu, Z. Y.; Xu, S. L.; Feng, Y. G.; Yang, C. Y.; Yao, Q.; Shao, Q.; Li, Y. F.; Huang, X. Q. Phase-controlled synthesis of Pd-Se nanocrystals for phase-dependent oxygen reduction catalysis. Nano Lett. 2021, 21, 3805–3812.

    Article  CAS  Google Scholar 

  142. Albani, D.; Shahrokhi, M.; Chen, Z. P.; Mitchell, S.; Hauert, R.; López, N.; Pérez-Ramírez, J. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nat. Commun. 2018, 9, 2634.

    Article  Google Scholar 

  143. Panaritis, C.; Zgheib, J.; Ebrahim, S. A. H.; Couillard, M.; Baranova, E. A. Electrochemical in-situ activation of Fe-oxide nanowires for the reverse water gas shift reaction. Appl. Catal. B Environ. 2020, 269, 118826.

    Article  CAS  Google Scholar 

  144. Quast, T.; Aiyappa, H. B.; Saddeler, S.; Wilde, P.; Chen, Y. T.; Schulz, S.; Schuhmann, W. Single-entity electrocatalysis of individual “picked-and-dropped” Co3O4 nanoparticles on the tip of a carbon nanoelectrode. Angew. Chem., Int. Ed. 2021, 60, 3576–3580.

    Article  CAS  Google Scholar 

  145. Ye, Z. G.; Li, T.; Ma, G.; Dong, Y. H.; Zhou, X. L. Metal-ion (Fe, V, Co, and Ni)-doped MnO2 ultrathin nanosheets supported on carbon fiber paper for the oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1704083.

    Article  Google Scholar 

  146. Umena, Y.; Kawakami, K.; Shen, J. R.; Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 2011, 473, 55–60.

    Article  CAS  Google Scholar 

  147. Post, J. E. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA 1999, 96, 3447–3454.

    Article  CAS  Google Scholar 

  148. Yang, R. J.; Fan, Y. Y.; Ye, R. Q.; Tang, Y. X.; Cao, X. H.; Yin, Z. Y.; Zeng, Z. Y. MnO2-based materials for environmental applications. Adv. Mater. 2021, 33, 2004862.

    Article  CAS  Google Scholar 

  149. Meng, Y. T.; Song, W. Q.; Huang, H.; Ren, Z.; Chen, S. Y.; Suib, S. L. Structure-property relationship of bifunctional MnO2 nanostructures: Highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J. Am. Chem. Soc. 2014, 136, 11452–11464.

    Article  CAS  Google Scholar 

  150. Liu, J. Y.; Wang, H. Y.; Wang, L. X.; Jian, P. M.; Yan, X. D. Phase-dependent catalytic performance of MnO2 for solvent-free oxidation of ethybenzene with molecular oxygen. Appl. Catal. B Environ. 2022, 305, 121050.

    Article  CAS  Google Scholar 

  151. Kim, J.; Yin, X.; Tsao, K. C.; Fang, S. H.; Yang, H. Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction. J. Am. Chem. Soc. 2014, 136, 14646–14649.

    Article  CAS  Google Scholar 

  152. Anantharaj, S.; Kundu, S.; Noda, S. “The Fe effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514.

    Article  CAS  Google Scholar 

  153. Kim, B. J.; Fabbri, E.; Abbott, D. F.; Cheng, X.; Clark, A. H.; Nachtegaal, M.; Borlaf, M.; Castelli, I. E.; Graule, T.; Schmidt, T. J. Functional role of Fe-doping in co-based perovskite oxide catalysts for oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 5231–5240.

    Article  CAS  Google Scholar 

  154. Zhao, Q.; Yan, Z. H.; Chen, C. C.; Chen, J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 2017, 117, 10121–10211.

    Article  CAS  Google Scholar 

  155. Wu, G. P.; Wang, J.; Ding, W.; Nie, Y.; Li, L.; Qi, X. Q.; Chen, S. G.; Wei, Z. D. A strategy to promote the electrocatalytic activity of spinels for oxygen reduction by structure reversal. Angew. Chem., Int. Ed. 2016, 55, 1340–1344.

    Article  CAS  Google Scholar 

  156. Lee, J. G.; Hwang, J.; Hwang, H. J.; Jeon, O. S.; Jang, J.; Kwon, O.; Lee, Y.; Han, B.; Shul, Y. G. A new family of perovskite catalysts for oxygen-evolution reaction in alkaline media: BaNiO3 and BaNi0.83O2.5. J. Am. Chem. Soc. 2016, 138, 3541–3547.

    Article  CAS  Google Scholar 

  157. Xiang, W. K.; Yang, N. T.; Li, X. P.; Linnemann, J.; Hagemann, U.; Ruediger, O.; Heidelmann, M.; Falk, T.; Aramini, M.; DeBeer, S. et al. 3D atomic-scale imaging of mixed Co-Fe spinel oxide nanoparticles during oxygen evolution reaction. Nat. Commun. 2022, 13, 179.

    Article  CAS  Google Scholar 

  158. Luan, X. Q.; Du, H. T.; Kong, Y.; Qu, F. L.; Lu, L. M. A novel FeS-NiS hybrid nanoarray: An efficient and durable electrocatalyst for alkaline water oxidation. Chem. Commun. 2019, 55, 7335–7338.

    Article  CAS  Google Scholar 

  159. Hu, J.; Li, S. W.; Chu, J. Y.; Niu, S. Q.; Wang, J.; Du, Y. C.; Li, Z. H.; Han, X. J.; Xu, P. Understanding the phase-induced electrocatalytic oxygen evolution reaction activity on FeOOH nanostructures. ACS Catal. 2019, 9, 10705–10711.

    Article  CAS  Google Scholar 

  160. Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martinez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

    Article  CAS  Google Scholar 

  161. Gao, J. J.; Xu, C. Q.; Hung, S. F.; Liu, W.; Cai, W. Z.; Zeng, Z. P.; Jia, C. M.; Chen, H. M.; Xiao, H.; Li, J. et al. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J. Am. Chem. Soc. 2019, 141, 3014–3023.

    Article  CAS  Google Scholar 

  162. Willinger, E.; Massué, C.; Schlögl, R.; Willinger, M. G. Identifying key structural features of IrOx water splitting catalysts. J. Am. Chem. Soc. 2017, 139, 12093–12101.

    Article  CAS  Google Scholar 

  163. Chen, H.; Shi, L.; Liang, X.; Wang, L. N.; Asefa, T.; Zou, X. X. Optimization of active sites via crystal phase, composition, and morphology for efficient low-iridium oxygen evolution catalysts. Angew. Chem., Int. Ed. 2020, 59, 19654–19658.

    Article  CAS  Google Scholar 

  164. Liang, X.; Shi, L.; Cao, R.; Wan, G.; Yan, W. S.; Chen, H.; Liu, Y. P.; Zou, X. X. Perovskite-type solid solution nano-electrocatalysts enable simultaneously enhanced activity and stability for oxygen evolution. Adv. Mater. 2020, 32, 2001430.

    Article  CAS  Google Scholar 

  165. Liu, Y. P.; Liang, X.; Chen, H.; Gao, R. Q.; Shi, L.; Yang, L.; Zou, X. X. Iridium-containing water-oxidation catalysts in acidic electrolyte. Chin. J. Catal. 2021, 42, 1054–1077.

    Article  CAS  Google Scholar 

  166. Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

    Article  CAS  Google Scholar 

  167. Yang, L.; Yu, G. T.; Ai, X.; Yan, W. S.; Duan, H. L.; Chen, W.; Li, X. T.; Wang, T.; Zhang, C. H.; Huang, X. R. et al. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nat. Commun. 2018, 9, 5236.

    Article  CAS  Google Scholar 

  168. Zhang, Q.; Liang, X.; Chen, H.; Yan, W. S.; Shi, L.; Liu, Y. P.; Li, J. Y.; Zou, X. X. Identifying key structural subunits and their synergism in low-iridium triple perovskites for oxygen evolution in acidic media. Chem. Mater. 2020, 32, 3904–3910.

    Article  CAS  Google Scholar 

  169. Gao, R. Q.; Zhang, Q.; Chen, H.; Chu, X. F.; Li, G. D.; Zou, X. X. Efficient acidic oxygen evolution reaction electrocatalyzed by iridium-based 12L-perovskites comprising trinuclear face-shared IrO6 octahedral strings. J. Energy Chem. 2020, 47, 291–298.

    Article  Google Scholar 

  170. Feng, W. Q.; Chen, H.; Zhang, Q.; Gao, R. Q.; Zou, X. X. Lanthanide-regulated oxygen evolution activity of face-sharing IrO6 dimers in 6H-perovskite electrocatalysts. Chin. J. Catal. 2020, 41, 1692–1697.

    Article  CAS  Google Scholar 

  171. Zhu, C. H.; Tian, H.; Huang, B.; Cai, G. H.; Yuan, C. Y.; Zhang, Y. T.; Li, Y. L.; Li, G. Q.; Xu, H.; Li, M. R. Boosting oxygen evolution reaction by enhanced intrinsic activity in Ruddlesden—Popper iridate oxides. Chem. Eng. J. 2021, 423, 130185.

    Article  CAS  Google Scholar 

  172. Li, Q. J.; Zou, X.; Ai, X.; Chen, H.; Sun, L.; Zou, X. X. Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity. Adv. Energy Mater. 2019, 9, 1803369.

    Google Scholar 

  173. Vo Doan, T. T.; Wang, J. B.; Poon, K. C.; Tan, D. C. L.; Khezri, B.; Webster, R. D.; Su, H. B.; Sato, H. Theoretical modelling and facile synthesis of a highly active boron-doped palladium catalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2016, 55, 6842–6847.

    Article  Google Scholar 

  174. Kobayashi, K.; Kobayashi, H.; Maesato, M.; Hayashi, M.; Yamamoto, T.; Yoshioka, S.; Matsumura, S.; Sugiyama, T.; Kawaguchi, S.; Kubota, Y. et al. Discovery of hexagonal structured Pd-B nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 6578–6582.

    Article  CAS  Google Scholar 

  175. Li, J.; Chen, J. X.; Wang, Q.; Cai, W. B.; Chen, S. L. Controllable increase of boron content in B-Pd interstitial nanoalloy to boost the oxygen reduction activity of palladium. Chem. Mater. 2017, 29, 10060–10067.

    Article  CAS  Google Scholar 

  176. Lv, H.; Sun, L. Z.; Xu, D. D.; Henzie, J.; Yamauchi, Y.; Liu, B. Mesoporous palladium-boron alloy nanospheres. J. Mater. Chem. A 2019, 7, 24877–24883.

    Article  CAS  Google Scholar 

  177. Wei, G. F.; Zhang, L. R.; Liu, Z. P. Group-VIII transition metal boride as promising hydrogen evolution reaction catalysts. Phys. Chem. Chem. Phys. 2018, 20, 27752–27757.

    Article  CAS  Google Scholar 

  178. Chen, L.; Zhang, L. R.; Yao, L. Y.; Fang, Y. H.; He, L.; Wei, G. F.; Liu, Z. P. Metal boride better than Pt: HCP Pd2B as a superactive hydrogen evolution reaction catalyst. Energy Environ. Sci. 2019, 12, 3099–3105.

    Article  Google Scholar 

  179. Li, Z. Y.; Zhao, L. M.; Chen, H.; Liang, X.; Ai, X.; Xie, Z. B.; Li, X. T.; Yang, F.; Liu, H. Y.; Zou, X. X. Crystal phase-selective synthesis of intermetallic palladium borides and their phaseregulated (electro)catalytic properties. Catal. Sci. Technol. 2022, 12, 1038–1042.

    Article  CAS  Google Scholar 

  180. Li, Q. J.; Wang, L. N.; Ai, X.; Chen, H.; Zou, J. Y.; Li, G. D.; Zou, X. X. Multiple crystal phases of intermetallic tungsten borides and phase-dependent electrocatalytic property for hydrogen evolution. Chem. Commun. 2020, 56, 13983–13986.

    Article  CAS  Google Scholar 

  181. Chen, Y. L.; Yu, G. T.; Chen, W.; Liu, Y. P.; Li, G. D.; Zhu, P. W.; Tao, Q.; Li, Q. J.; Liu, J. W.; Shen, X. P. et al. Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 12370–12373.

    Article  CAS  Google Scholar 

  182. Liu, X.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Isolated boron sites for electroreduction of dinitrogen to ammonia. ACS Catal. 2020, 10, 1847–1854.

    Article  CAS  Google Scholar 

  183. Ai, X.; Chen, H.; Liang, X.; Shi, L.; Zhang, M. C.; Zhang, K. X.; Zou, Y. C.; Zou, X. X. Metal-coordinating single-boron sites confined in antiperovskite borides for N2-to-NH3 catalytic conversion. ACS Catal. 2022, 12, 2967–2978.

    Article  CAS  Google Scholar 

  184. Vrubel, H.; Hu, X. L. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem., Int. Ed. 2012, 51, 12703–12706.

    Article  CAS  Google Scholar 

  185. Wan, C.; Regmi, Y. N.; Leonard, B. M. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 6407–6410.

    Article  CAS  Google Scholar 

  186. Deng, B.; Wang, Z.; Chen, W. Y.; Li, J. T.; Luong, D. X.; Carter, R. A.; Gao, G. H.; Yakobson, B. I.; Zhao, Y. F.; Tour, J. M. Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating. Nat. Commun. 2022, 13, 262.

    Article  CAS  Google Scholar 

  187. Xiao, P.; Sk, M. A.; Thia, L.; Ge, X. M.; Lim, R. J.; Wang, J. Y.; Lim, K. H.; Wang, X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 2624–2629.

    Article  CAS  Google Scholar 

  188. Schipper, D. E.; Zhao, Z. H.; Thirumalai, H.; Leitner, A. P.; Donaldson, S. L.; Kumar, A.; Qin, F.; Wang, Z. M.; Grabow, L. C.; Bao, J. M. et al. Effects of catalyst phase on the hydrogen evolution reaction of water splitting: Preparation of phase-pure films of FeP, Fe2P, and Fe3P and their relative catalytic activities. Chem. Mater. 2018, 30, 3588–3598.

    Article  CAS  Google Scholar 

  189. Fu, Q.; Wang, X. J.; Han, J. C.; Zhong, J.; Zhang, T. R.; Yao, T.; Xu, C. Y.; Gao, T. L.; Xi, S. B.; Liang, C. et al. Phase-junction electrocatalysts towards enhanced hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 60, 259–267.

    Article  CAS  Google Scholar 

  190. Chen, H.; Ai, X.; Liu, W.; Xie, Z. B.; Feng, W. Q.; Chen, W.; Zou, X. X. Promoting subordinate, efficient ruthenium sites with interstitial silicon for Pt-like electrocatalytic activity. Angew. Chem., Int. Ed. 2019, 58, 11409–11413.

    Article  CAS  Google Scholar 

  191. Chen, D.; Pu, Z. H.; Wang, P. Y.; Lu, R. H.; Zeng, W. H.; Wu, D. L.; Yao, Y. T.; Zhu, J. W.; Yu, J.; Ji, P. X. et al. Mapping hydrogen evolution activity trends of intermetallic Pt-group silicides. ACS Catal. 2022, 12, 2623–2631.

    Article  CAS  Google Scholar 

  192. Liu, W.; Zhang, X. M.; Meng, W. Z.; Liu, Y.; Dai, X. F.; Liu, G. D. Theoretical realization of hybrid Weyl state and associated high catalytic performance for hydrogen evolution in NiSi. iScience 2022, 25, 103543.

    Article  CAS  Google Scholar 

  193. He, Y.; Wang, T. L.; Zhang, M.; Wang, T. W.; Wu, L. F.; Zeng, L. Y.; Wang, X. P.; Boubeche, M.; Wang, S.; Yan, K. et al. Discovery and facile synthesis of a new silicon based family as efficient hydrogen evolution reaction catalysts: A computational and experimental investigation of metal monosilicides. Small 2021, 17, 2006153.

    Article  CAS  Google Scholar 

  194. Pu, Z. H.; Liu, T. T.; Zhang, G. X.; Chen, Z. S.; Li, D. S.; Chen, N.; Chen, W. F.; Chen, Z. X.; Sun, S. H. General synthesis of transition-metal-based carbon-group intermetallic catalysts for efficient electrocatalytic hydrogen evolution in wide pH range. Adv. Energy Mater. 2022, 12, 2200293.

    Article  CAS  Google Scholar 

  195. Chen, H.; Zhang, M. C.; Zhang, K. X.; Li, Z. Y.; Liang, X.; Ai, X.; Zou, X. X. Screening and understanding lattice silicon-controlled catalytically active site motifs from a library of transition metal-silicon intermetallics. Small 2022, 18, 2107371.

    Article  CAS  Google Scholar 

  196. Zou, X. X.; Wu, Y. Y.; Liu, Y. P.; Liu, D. P.; Li, W.; Gu, L.; Liu, H.; Wang, P. W.; Sun, L.; Zhang, Y. In situ generation of bifunctional, efficient Fe-based catalysts from mackinawite iron sulfide for water splitting. Chem 2018, 4, 1139–1152.

    Article  CAS  Google Scholar 

  197. Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts. ACS Energy Lett. 2017, 2, 1937–1938.

    Article  CAS  Google Scholar 

  198. Chen, H.; Liu, Y. P.; Zhang, B.; Zou, X. X. Future directions of catalytic chemistry. Pure Appl. Chem. 2021, 93, 1411–1421.

    Article  CAS  Google Scholar 

  199. Baldi, A.; Narayan, T. C.; Koh, A. L.; Dionne, J. A. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat. Mater. 2014, 13, 1143–1148.

    Article  CAS  Google Scholar 

  200. Chen, T. Y.; Ellis, I.; Hooper, T. J. N.; Liberti, E.; Ye, L.; Lo, B. T. W.; O’Leary, C.; Sheader, A. A.; Martinez, G. T.; Jones, L. et al. Interstitial boron atoms in the palladium lattice of an industrial type of nanocatalyst: Properties and structural modifications. J. Am. Chem. Soc. 2019, 141, 19616–19624.

    Article  CAS  Google Scholar 

  201. Zhou, Y.; Fan, H. J. Progress and challenge of amorphous catalysts for electrochemical water splitting. ACS Mater. Lett. 2021, 3, 136–147.

    Article  CAS  Google Scholar 

  202. Guo, T. Q.; Li, L. D.; Wang, Z. C. Recent development and future perspectives of amorphous transition metal-based electrocatalysts for oxygen evolution reaction. Adv. Energy Mater., in press, https://doi.org/10.1002/aenm.202200827.

  203. Wang, C.; Zhai, P. L.; Xia, M. Y.; Wu, Y. Z.; Zhang, B.; Li, Z. W.; Ran, L.; Gao, J. F.; Zhang, X. M.; Fan, Z. Z. et al. Engineering lattice oxygen activation of iridium clusters stabilized on amorphous bimetal borides array for oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 27126–27134.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21922507, 22179046, and 21621001), the Jilin Province Science and Technology Development Plan (Nos. YDZJ202101ZYTS126 and 20210101403JC), the Science and Technology Research Program of Education Department of Jilin Province (No. JJKH20220998KJ), and the 111 Project (No. B17020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Yang or Xiaoxin Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhang, M., Wang, Y. et al. Crystal phase engineering of electrocatalysts for energy conversions. Nano Res. 15, 10194–10217 (2022). https://doi.org/10.1007/s12274-022-4605-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4605-y

Keywords

Navigation