Skip to main content
Log in

Ir single atoms modified Ni(OH)2 nanosheets on hierarchical porous nickel foam for efficient oxygen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing highly efficient oxygen evolution reaction (OER) catalysts for electrolytic water splitting is urgently desirable but remains a challenge due to sluggish kinetic process of water oxidation. Herein, we report a one-step electrodeposition strategy to prepare Ni(OH)2 modified with Ir single-atom catalysts (SACs) (Ir SACs/Ni(OH)2) on an electrically conductive substrate of three dimensional (3D) hierarchical porous nickel foam (HP-NF) as efficient OER electrocatalyst. The HP-NF with abundant open pores can not only enable the full exposure of catalytically active sites but also facilitate the diffusion of electrolyte and release of gaseous oxygen produced. The optimal Ir SACs/Ni(OH)2@HP-NF exhibits a remarkable catalytic performance and outstanding stability for the OER activity in 1.0 M KOH alkaline media, delivering a low overpotential of ∼ 223 mV at a current density of 10 mA·cm−2 and a low Tafel plot of 58 mV·dec−1. Various characterizations together with control electrochemical experiments demonstrated that the superior activity and robust stability of Ir SACs/Ni(OH)2@HP-NF for OER are originated from the highly distributed and exposed Ir SACs and 3D interconnected pores of HP-NF with high electric conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.

    Article  CAS  Google Scholar 

  2. Liu, C.; Colón, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 2016, 352, 1210–1213.

    Article  CAS  Google Scholar 

  3. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  4. Kang, Y. Y.; Chen, R. Z.; Zhen, C.; Wang, L. Z.; Liu, G.; Cheng, H. M. An integrated thermoelectric-assisted photoelectrochemical system to boost water splitting. Sci. Bull. 2020, 65, 1163–1169.

    Article  CAS  Google Scholar 

  5. Meng, X. D.; Zhen, C.; Liu, G.; Cheng, H. M. Stabilizing CuO photocathode with a Cu3N protection shell. Chin. J. Catal. 2022, 43, 755–760.

    Article  CAS  Google Scholar 

  6. Lei, Z. W.; Wang, T. Y.; Zhao, B. T.; Cai, W. B.; Liu, Y.; Jiao, S. H.; Li, Q.; Cao, R. G.; Liu, M. L. Recent progress in electrocatalysts for acidic water oxidation. Adv. Energy Mater. 2020, 10, 2000478.

    Article  CAS  Google Scholar 

  7. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  CAS  Google Scholar 

  8. Zhang, L. L.; Yang, Y. Q.; Zhu, H. Z.; Cheng, H. M.; Liu, G. Iron-doped NiS2 microcrystals with exposed {001} facets for electrocatalytic water oxidation. J. Colloid Interface Sci. 2022, 608, 599–604.

    Article  CAS  Google Scholar 

  9. Shi, Q. R.; Zhu, C. Z.; Du, D.; Lin, Y. H. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem. Soc. Rev. 2019, 48, 3181–3192.

    Article  CAS  Google Scholar 

  10. Li, J. J.; Lian, Z.; Li, Q.; Wang, Z. C.; Liu, L. F.; Deepak, F. L.; Liu, Y. P.; Li, B.; Xu, J. Y.; Chen, Z. X. Boosting acidic water oxidation performance by constructing arrays-like nanoporous IrxRu1−xO2 with abundant atomic steps. Nano Res. 2022, 15, 5933–5939.

    Article  CAS  Google Scholar 

  11. Guerra, O. J.; Eichman, J.; Kurtz, J.; Hodge, B. M. Cost competitiveness of electrolytic hydrogen. Joule 2019, 3, 2425–2443.

    Article  Google Scholar 

  12. Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

    Article  CAS  Google Scholar 

  13. Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 2019, 4, 430–433.

    Article  Google Scholar 

  14. Srinivas, K.; Chen, X.; Liu, D. W.; Ma, F.; Zhang, X. J.; Zhang, W. L.; Lin, H.; Chen, Y. F. Surface modification of metal-organic frameworks under sublimated iron-atmosphere by controlled carbonization for boosted oxygen evolution reaction. Nano Res. 2022, 15, 5884–5894.

    Article  CAS  Google Scholar 

  15. Kaiser, S. K.; Chen, Z. P.; Akl, D. F.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

    Article  CAS  Google Scholar 

  16. Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

    Article  CAS  Google Scholar 

  17. Shao, X. Z.; Yang, X. F.; Xu, J. M.; Liu, S.; Miao, S.; Liu, X. Y.; Su, X.; Duan, H. M.; Huang, Y. Q.; Zhang, T. Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO2 to formate. Chem 2019, 5, 693–705.

    Article  CAS  Google Scholar 

  18. Sharma, P.; Kumar, S.; Tomanec, O.; Petr, M.; Chen, J. Z.; Miller, J. T.; Varma, R. S.; Gawande, M. B.; Zbořil, R. Carbon nitride-based ruthenium single atom photocatalyst for CO2 reduction to methanol. Small 2021, 17, 2006478.

    Article  CAS  Google Scholar 

  19. Cao, T.; Lin, R.; Liu, S. J.; Cheong, W. C.; Li, Z.; Wu, K. L.; Zhu, Y. Q.; Wang, X. L.; Zhang, J.; Li, Q. H. et al. Atomically dispersed Ni anchored on polymer-derived mesh-like N-doped carbon nanofibers as an efficient CO2 electrocatalytic reduction catalyst. Nano Res. 2022, 15, 3959–3963.

    Article  CAS  Google Scholar 

  20. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Article  CAS  Google Scholar 

  21. Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

    Article  CAS  Google Scholar 

  22. Zhao, J.; Ji, S. F.; Guo, C. X.; Li, H. J.; Dong, J. C.; Guo, P.; Wang, D. S.; Li, Y. D.; Toste, F. D. A heterogeneous iridium single-atomsite catalyst for highly regioselective carbenoid O-H bond insertion. Nat. Catal. 2021, 4, 523–531.

    Article  CAS  Google Scholar 

  23. Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

    Article  CAS  Google Scholar 

  24. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  25. Gusmão, R.; Veselý, M.; Sofer, Z. Recent developments on the single atom supported at 2D materials beyond graphene as catalysts. ACS Catal. 2020, 10, 9634–9648.

    Article  Google Scholar 

  26. Wang, Q.; Huang, X.; Zhao, Z. L.; Wang, M. Y.; Xiang, B.; Li, J.; Feng, Z. X.; Xu, H.; Gu, M. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 7425–7433.

    Article  CAS  Google Scholar 

  27. Gawande, M. B.; Fornasiero, P.; Zbořil, R. Carbon-based singleatom catalysts for advanced applications. ACS Catal. 2020, 10, 2231–2259.

    Article  CAS  Google Scholar 

  28. Lai, W. H.; Zhang, L. F.; Hua, W. B.; Indris, S.; Yan, Z. C.; Hu, Z.; Zhang, B. W.; Liu, Y. N.; Wang, L.; Liu, M. et al. General π-electron-assisted strategy for Ir, Pt, Ru, Pd, Fe, Ni single-atom electrocatalysts with bifunctional active sites for highly efficient water splitting. Angew. Chem., Int. Ed. 2019, 58, 11868–11873.

    Article  CAS  Google Scholar 

  29. Shan, J. Q.; Ye, C.; Chen, S. M.; Sun, T. L.; Jiao, Y.; Liu, L. M.; Zhu, C. Z.; Song, L.; Han, Y.; Jaroniec, M. et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation. J. Am. Chem. Soc. 2021, 143, 5201–5211.

    Article  CAS  Google Scholar 

  30. Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

    Article  CAS  Google Scholar 

  31. Wang, D. W.; Li, Q.; Han, C.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 2019, 10, 3899.

    Article  Google Scholar 

  32. Singh, B.; Sharma, V.; Gaikwad, R. P.; Fornasiero, P.; Zbořil, R.; Gawande, M. B. Single-atom catalysts: A sustainable pathway for the advanced catalytic applications. Small 2021, 17, 2006473.

    Article  CAS  Google Scholar 

  33. Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

    Article  CAS  Google Scholar 

  34. Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

    Article  CAS  Google Scholar 

  35. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  36. Qi, K.; Chhowalla, M.; Voiry, D. Single atom is not alone: Metal-support interactions in single-atom catalysis. Mater. Today 2020, 40, 173–192.

    Article  CAS  Google Scholar 

  37. Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

    Article  CAS  Google Scholar 

  38. Lei, Z. W.; Cai, W. B.; Rao, Y. F.; Wang, K.; Jiang, Y. Y.; Liu, Y.; Jin, X.; Li, J. M.; Lv, Z. X.; Jiao, S. H. et al. Coordination modulation of iridium single-atom catalyst maximizing water oxidation activity. Nat. Commun. 2022, 13, 24.

    Article  CAS  Google Scholar 

  39. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  40. Klaus, S.; Cai, Y.; Louie, M. W.; Trotochaud, L.; Bell, A. T. Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity. J. Phys. Chem. C 2015, 119, 7243–7254.

    Article  CAS  Google Scholar 

  41. Gao, M. R.; Sheng, W. C.; Zhuang, Z. B.; Fang, Q. R.; Gu, S.; Jiang, J.; Yan, Y. S. Efficient water oxidation using nanostructured anickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 2014, 136, 7077–7084.

    Article  CAS  Google Scholar 

  42. Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S. H.; Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles. Chem. Mater. 2015, 27, 7549–7558.

    Article  CAS  Google Scholar 

  43. Zhao, G. Q.; Li, P.; Cheng, N. Y.; Dou, S. X.; Sun, W. P. An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: Breaking the scaling relation, stabilizing iridium(v), and beyond. Adv. Mater. 2020, 32, 2000872.

    Article  CAS  Google Scholar 

  44. Lin, J.; Wang, A. Q.; Qiao, B. T.; Liu, X. Y.; Yang, X. F.; Wang, X. D.; Liang, J. X.; Li, J.; Liu, J. Y.; Zhang, T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317.

    Article  CAS  Google Scholar 

  45. Lang, R.; Xi, W.; Liu, J. C.; Cui, Y. T.; Li, T. B.; Lee, A. F.; Chen, F.; Chen, Y.; Li, L.; Li, L. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 2019, 10, 234.

    Article  Google Scholar 

  46. Zhang, S. R.; Nguyen, L.; Liang, J. X.; Shan, J. J.; Liu, J. Y.; Frenkel, A. I.; Patlolla, A.; Huang, W. X.; Li, J.; Tao, F. Catalysis on singly dispersed bimetallic sites. Nat. Commun. 2015, 6, 7938.

    Article  CAS  Google Scholar 

  47. Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278.

    Article  Google Scholar 

  48. Zhong, B.; Kuang, P. Y.; Wang, L. X.; Yu, J. G. Hierarchical porous nickel supported NiFeOxHy nanosheets for efficient and robust oxygen evolution electrocatalyst under industrial condition. Appl. Catal. B 2021, 299, 120668.

    Article  CAS  Google Scholar 

  49. Qin, H.; Zhen, C.; Jia, C. X.; Yang, Z. Q.; Ye, H. Q.; Cheng, H. M.; Liu, G. An oxidation-nitridation-denitridation approach to transform metal solids into foams with adjustable pore sizes for energy applications. Sci. Bull. 2021, 66, 1525–1532.

    Article  CAS  Google Scholar 

  50. Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Key Research and Development Program of China (No. 2021YFA1500800), the National Natural Science Foundation of China (Nos. 51825204, 52072377, and 521888101), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2020192), the International Partnership Program of Chinese Academy of Sciences (No. 174321KYSB20200005), and the Natural Science Foundation of Liaoning Province (No. 2021-MS-014) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Zhen or Gang Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, C., Qin, H., Zhen, C. et al. Ir single atoms modified Ni(OH)2 nanosheets on hierarchical porous nickel foam for efficient oxygen evolution. Nano Res. 15, 10014–10020 (2022). https://doi.org/10.1007/s12274-022-4501-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4501-5

Keywords

Navigation