Skip to main content
Log in

CaCO3-MnSiOx hybrid particles to enable CO2-mediated combinational tumor therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanocatalysts mediated reactive oxygen species (ROS) based therapy has been exploited as an alternative therapeutic modality of tumor with high specificity and minimal side effects. However, the treatment outcome is limited by the efficiency of local catalytic reaction. Herein, we report a novel type of core-shell hybrid nanoparticles (CaCO3@MS), consisting of CaCO3 and MnSiOx, for synergistic tumor inhibition combining enhanced catalytic effect and calcium overload. In this system, MnSiOx serves as catalysts with glutathione (GSH) responsive Mn2+ ions release functionality. CaCO3 nanoparticles play three important roles, including carbon dioxide (CO2) donor, pH modulator, and Ca2+ overload agent. It is found that the CaCO3 nanoparticles can induce CO2 production and pH increase in acidic tumor environment, both of which promote Mn2+ mediated ROS generation. And simultaneous release of Ca2+ ions from CaCO3 triggers calcium overload in tumor, which functions collaboratively with excessive ROS to induce cancer cell apoptosis. The results demonstrate that after treatment with CaCO3@MS, a remarkable tumor inhibition was achieved both in vitro and in vivo, while no clear toxic effect was observed. This study has therefore provided a feasible effective approach to improve catalytic therapeutic efficacy by an “exogenous CO2 delivery” strategy for combinational tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, B. W.; Chen, Y.; Shi, J. L. Nanocatalytic medicine. Adv. Mater. 2019, 31, 1901778.

    Article  Google Scholar 

  2. Xie, C. K.; Cen, D.; Ren, Z. H.; Wang, Y. F.; Wu, Y. J.; Li, X.; Han, G. R.; Cai, X. J. FeS@BSA nanoclusters to enable H2S-amplified ROS-based therapy with MRI guidance. Adv. Sci. 2020, 7, 1903512.

    Article  CAS  Google Scholar 

  3. Zhang, C.; Bu, W. B.; Ni, D. L.; Zhang, S. J.; Li, Q.; Yao, Z. W.; Zhang, J. W.; Yao, H. L.; Wang, Z.; Shi, J. L. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew. Chem., Int. Ed. 2016, 55, 2101–2106.

    Article  CAS  Google Scholar 

  4. Tang, Z. M.; Zhang, H. L.; Liu, Y. Y.; Ni, D. L.; Zhang, H.; Zhang, J. W.; Yao, Z. W.; He, M. Y.; Shi, J. L.; Bu, W. B. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Adv. Mater. 2017, 29, 1701683.

    Article  Google Scholar 

  5. Deng, L. M.; Liu, M. Z.; Sheng, D. L.; Luo, Y. L.; Wang, D.; Yu, X.; Wang, Z. G.; Ran, H. T.; Li, P. Low-intensity focused ultrasound-augmented cascade chemodynamic therapy via boosting ROS generation. Biomaterials 2021, 271, 120710.

    Article  CAS  Google Scholar 

  6. Li, S. L.; Jiang, P.; Jiang, F. L.; Liu, Y. Recent advances in nanomaterial-based nanoplatforms for chemodynamic cancer therapy. Adv. Funct. Mater. 2021, 31, 2100243.

    Article  CAS  Google Scholar 

  7. Tian, Q. W.; Xue, F. F.; Wang, Y. R.; Cheng, Y. Y.; An, L.; Yang, S. P.; Chen, X. Y.; Huang, G. Recent advances in enhanced chemodynamic therapy strategies. Nano Today 2021, 39, 101162.

    Article  CAS  Google Scholar 

  8. Chen, J.; Wang, X. B.; Liu, Y. B.; Liu, H. L.; Gao, F. L.; Lan, C.; Yang, B. C.; Zhang, S. R.; Gao, Y. J. pH-responsive catalytic mesocrystals for chemodynamic therapy via ultrasound-assisted Fenton reaction. Chem. Eng. J. 2019, 369, 394–402.

    Article  CAS  Google Scholar 

  9. Hu, P.; Wu, T.; Fan, W. P.; Chen, L.; Liu, Y. Y.; Ni, D. L.; Bu, W. B.; Shi, J. L. Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials 2017, 141, 86–95.

    Article  Google Scholar 

  10. Ember, E.; Rothbart, S.; Puchta, R.; Van Eldik, R. Metal ion-catalyzed oxidative degradation of orange II by H2O2. High catalytic activity of simple manganese salts. New J. Chem. 2009, 33, 34–49.

    CAS  Google Scholar 

  11. Lin, L. S.; Song, J. B.; Song, L.; Ke, K. M.; Liu, Y. J.; Zhou, Z. J.; Shen, Z. Y.; Li, J.; Yang, Z.; Tang, W. et al. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 4902–4906.

    Article  CAS  Google Scholar 

  12. Li, C.; Wan, Y.; Zhang, Y.; Fu, L. H.; Blum, N. T.; Cui, R.; Wu, B.; Zheng, R.; Lin, J.; Li, Z. et al. In situ sprayed starvation/chemodynamic therapeutic gel for post-surgical treatment of IDH1 (R132H) glioma. Adv. Mater. 2022, 34, 2103980.

    Article  CAS  Google Scholar 

  13. He, T.; Jiang, C.; He, J.; Zhang, Y. F.; He, G.; Wu, J. Y. Z.; Lin, J.; Zhou, X.; Huang, P. Manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable duplex-imaging-guided NIR-II photothermal-chemodynamic therapy. Adv. Mater. 2021, 33, 2008540.

    Article  CAS  Google Scholar 

  14. Fu, L. H.; Wan, Y. L.; Li, C. Y.; Qi, C.; He, T.; Yang, C.; Zhang, Y. F.; Lin, J.; Huang, P. Biodegradable calcium phosphate nanotheranostics with tumor-specific activatable cascade catalytic reactions-augmented photodynamic therapy. Adv. Funct. Mater. 2021, 31, 2009848.

    Article  CAS  Google Scholar 

  15. Fu, L. H.; Hu, Y. R.; Qi, C.; He, T.; Jiang, S. S.; Jiang, C.; He, J.; Qu, J. L.; Lin, J.; Huang, P. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano 2019, 13, 13985–13994.

    Article  CAS  Google Scholar 

  16. Illés, E.; Mizrahi, A.; Marks, V.; Meyerstein, D. Carbonate-radicalanions, and not hydroxyl radicals, are the products of the Fenton reaction in neutral solutions containing bicarbonate. Free Radical Biol. Med. 2019, 131, 1–6.

    Article  Google Scholar 

  17. Burg, A.; Shamir, D.; Shusterman, I.; Kornweitz, H.; Meyerstein, D. The role of carbonate as a catalyst of Fenton-like reactions in AOP processes: CO3 as the active intermediate. Chem. Commun. Roy. Soc. Chem. 2014, 50, 13096–13099.

    Article  CAS  Google Scholar 

  18. Zhang, Y. M.; Lou, J. K.; Wu, L. L.; Nie, M. H.; Yan, C. X.; Ding, M. J.; Wang, P.; Zhang, H. Minute Cu2+ coupling with HCO3 for efficient degradation of acetaminophen via H2O2 activation. Ecotox. Environ. Safe. 2021, 221, 112422.

    Article  CAS  Google Scholar 

  19. Cummins, E. P.; Selfridge, A. C.; Sporn, P. H.; Sznajder, J. I.; Taylor, C. T. Carbon dioxide-sensing in organisms and its implications for human disease. Cell. Mol. Life Sci. 2014, 71, 831–845.

    Article  CAS  Google Scholar 

  20. Qi, C.; He, J.; Fu, L. H.; He, T.; Blum, N. T.; Yao, X. K.; Lin, J.; Huang, P. Tumor-specific activatable nanocarriers with gas-generation and signal amplification capabilities for tumor theranostics. ACS Nano 2021, 15, 1627–1639.

    Article  CAS  Google Scholar 

  21. Dizaj, S. M.; Sharifi, S.; Ahmadian, E.; Eftekhari, A.; Adibkia, K.; Lotfipour, F. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Expert Opin. Drug Deliv. 2019, 16, 331–345.

    Article  Google Scholar 

  22. Xu, C. Y.; Yan, Y. F.; Tan, J. C.; Yang, D. H.; Jia, X. J.; Wang, L.; Xu, Y. S.; Cao, S.; Sun, S. T. Biodegradable nanoparticles of polyacrylic acid-stabilized amorphous CaCO3 for tunable pH-responsive drug delivery and enhanced tumor inhibition. Adv. Funct. Mater. 2019, 29, 1808146.

    Article  Google Scholar 

  23. Xue, C. C.; Li, M. H.; Zhao, Y.; Zhou, J.; Hu, Y.; Cai, K. Y.; Zhao, Y. L.; Yu, S. H.; Luo, Z. Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in target tumor cells. Sci. Adv. 2020, 6, eaax1346.

    Article  CAS  Google Scholar 

  24. An, J. Y.; Zhang, K. X.; Wang, B. H.; Wu, S. X.; Wang, Y. F.; Zhang, H. L.; Zhang, Z. Z.; Liu, J. J.; Shi, J. J. Nanoenabled disruption of multiple barriers in antigen cross-presentation of dendritic cells via calcium interference for enhanced chemoimmunotherapy. ACS Nano 2020, 14, 7639–7650.

    Article  CAS  Google Scholar 

  25. Dong, Z. L.; Feng, L. Z.; Zhu, W. W.; Sun, X. Q.; Gao, M.; Zhao, H.; Chao, Y.; Liu, Z. CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials 2016, 110, 60–70.

    Article  CAS  Google Scholar 

  26. Som, A.; Raliya, R.; Tian, L. M.; Akers, W.; Ippolito, J. E.; Singamaneni, S.; Biswas, P.; Achilefu, S. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo. Nanoscale 2016, 8, 12639–12647.

    Article  CAS  Google Scholar 

  27. Zheng, P.; Ding, B. B.; Shi, R.; Jiang, Z. Y.; Xu, W. G.; Li, G.; Ding, J. X.; Chen, X. S. A multichannel Ca2+ nanomodulator for multilevel mitochondrial destruction-mediated cancer therapy. Adv. Mater. 2021, 33, 2007426.

    Article  CAS  Google Scholar 

  28. Hempel, N.; Trebak, M. Crosstalk between calcium and reactive oxygen species signaling in cancer. Cell Calcium 2017, 63, 70–96.

    Article  CAS  Google Scholar 

  29. Peng, T. I.; Jou, M. J. Oxidative stress caused by mitochondrial calcium overload. Ann. N. Y. Acad. Sci. 2010, 1201, 183–188.

    Article  CAS  Google Scholar 

  30. Bonora, M.; Pinton, P. The mitochondrial permeability transition pore and cancer: Molecular mechanisms involved in cell death. Front. Oncol. 2014, 4, 302.

    Article  Google Scholar 

  31. Monteith, G. R.; Prevarskaya, N.; Roberts-Thomson, S. J. The calcium-cancer signalling nexus. Nat. Rev. Cancer 2017, 17, 373–380.

    Article  Google Scholar 

  32. Antonucci, S.; Di Lisa, F.; Kaludercic, N. Mitochondrial reactive oxygen species in physiology and disease. Cell Calcium 2021, 94, 102344.

    Article  CAS  Google Scholar 

  33. Görlach, A.; Bertram, K.; Hudecova, S.; Krizanova, O. Calcium and ROS: A mutual interplay. Redox Biol. 2015, 6, 260–271.

    Article  Google Scholar 

  34. Zhao, Y.; Lin, L. N.; Lu, Y.; Chen, S. F.; Dong, L.; Yu, S. H. Templating synthesis of preloaded doxorubicin in hollow mesoporous silica nanospheres for biomedical applications. Adv. Mater. 2010, 22, 5255–5259.

    Article  CAS  Google Scholar 

  35. Zhao, Y.; Luo, Z.; Li, M. H.; Qu, Q. Y.; Ma, X.; Yu, S. H.; Zhao, Y. L. A preloaded amorphous calcium carbonate/doxorubicin@silica nanoreactor for pH-responsive delivery of an anticancer drug. Angew. Chem., Int. Ed. 2015, 54, 919–922.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Nos. 52172289 and 51902288), Provincial Key research program of Zhejiang Province (No. 2020C04005), and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yike Fu or Xiang Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, C., Zhang, T., Fu, Y. et al. CaCO3-MnSiOx hybrid particles to enable CO2-mediated combinational tumor therapy. Nano Res. 15, 8281–8290 (2022). https://doi.org/10.1007/s12274-022-4471-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4471-7

Keywords

Navigation