Skip to main content
Log in

Fabrication of LiOH-metal organic framework derived hierarchical porous host carbon matrix composites for seasonal thermochemical energy storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

By virtue of its long lifespan and outstanding storage intensity with near-zero heat loss, salt hydrate thermochemical energy storage (TES) materials provide a feasible option for the effective use of renewable energy and overcoming its unsynchronized supply and demand. Here, an activated porous carbon originating from the zeolite imidazolate framework (ZHCM) is fabricated and served as the carbon matrix for the LiOH TES material. The as-synthesized Li/ZHCM2-40 not only has excellent storage intensity (maximum 2414.2 kJ·kg−1) with low charging temperature, but also shows great hydration properties stemming from the ultrahigh surface area and hierarchical porous structure of ZHCM2. Besides, this composite material exhibits superior thermal conductivity, while its storage intensity is only attenuated by 10.2% after 15 times of consecutive charge—discharge process, revealing its outstanding cycle stability. And the numerical simulation results also demonstrate its superior heat transfer performance. The developed LiOH TES composite may afford a new avenue for efficient low-grade thermochemical energy storage and liberate the possibility of further exploration of metal organic frameworks derived porous carbon matrix in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carrillo, A. J.; González-Aguilar, J.; Romero, M.; Coronado, J. M. Solar energy on demand: A review on high temperature thermochemical heat storage systems and materials. Chem. Rev. 2019, 119, 4777–1816.

    Article  CAS  Google Scholar 

  2. Li, Y. T.; Li, M. T.; Xu, Z. B.; Meng, Z. H.; Wu, Q. P. Dehydration kinetics and thermodynamics of ZrO(NO3)2-doped Ca(OH)2 for chemical heat storage. Chem. Eng. J. 2020, 399, 125841.

    Article  CAS  Google Scholar 

  3. Koohi-Fayegh, S.; Rosen, M. A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047.

    Article  Google Scholar 

  4. Yu, Z. P.; Feng, D. L.; Feng, Y. H.; Zhang, X. X. Thermal conductivity and energy storage capacity enhancement and bottleneck of shape-stabilized phase change composites with graphene foam and carbon nanotubes. Compos. A Appl. Sci. Manuf. 2022, 152, 106703.

    Article  CAS  Google Scholar 

  5. Biesuz, M.; Valentini, F.; Bortolotti, M.; Zambotti, A.; Cestari, F.; Bruni, A.; Sglavo, V. M.; Sorarù, G. D.; Dorigato, A.; Pegoretti, A. Biogenic architectures for green, cheap, and efficient thermal energy storage and management. Renew. Energy 2021, 178, 96–107.

    Article  CAS  Google Scholar 

  6. Cabeza, L. F.; De Gracia, A.; Zsembinszki, G.; Borri, E. Perspectives on thermal energy storage research. Energy 2021, 231, 120943.

    Article  Google Scholar 

  7. Qi, G. Q.; Yang, J.; Bao, R. Y.; Xia, D. Y.; Cao, M.; Yang, W.; Yang, M. B.; Wei, D. C. Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res. 2017, 10, 802–813.

    Article  CAS  Google Scholar 

  8. Li, A. J.; Xu, W. Z.; Chen, R.; Liu, Y. C.; Li, W. Fabrication of zeolitic imidazolate frameworks on layered double hydroxide nanosheets to improve the fire safety of epoxy resin. Compos. A Appl. Sci. Manuf. 2018, 112, 558–571.

    Article  CAS  Google Scholar 

  9. Peng, J. J.; Tao, J.; Liu, Z. J.; Yang, Y. H.; Yu, L.; Zhang, M.; Wang, F.; Ding, Y. Ultra-stable and high capacity flexible lithiumion batteries based on bimetallic MOFs derivatives aiming for wearable electronic devices. Chem. Eng. J. 2021, 417, 129200.

    Article  CAS  Google Scholar 

  10. Gulbalkan, H. C.; Haslak, Z. P.; Altintas, C.; Uzun, A.; Keskin, S. Assessing CH4/N2 separation potential of MOFs, COFs, IL/MOF, MOF/Polymer, and COF/Polymer composites. Chem. Eng. J. 2022, 428, 131239.

    Article  CAS  Google Scholar 

  11. Gordeeva, L. G.; Tu, Y. D.; Pan, Q. W.; Palash, M. L.; Saha, B. B.; Aristov, Y. I.; Wang, R. Z. Metal-organic frameworks for energy conversion and water harvesting: A bridge between thermal engineering and material science. Nano Energy 2021, 84, 105946.

    Article  CAS  Google Scholar 

  12. Chen, Y. Z.; Zhang, R.; Jiao, L.; Jiang, H. L. Metal-organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 2018, 362, 1–23.

    Article  CAS  Google Scholar 

  13. Wang, J.; Wang, Y. L.; Hu, H. B.; Yang, Q. P.; Cai, J. J. From metal-organic frameworks to porous carbon materials: Recent progress and prospects from energy and environmental perspectives. Nanoscale 2020, 12, 4238–4268.

    Article  CAS  Google Scholar 

  14. DeCoste, J. B.; Peterson, G. W. Metal-organic frameworks for air purification of toxic chemicals. Chem. Rev. 2014, 114, 5695–5727.

    Article  CAS  Google Scholar 

  15. Zhu, L. N.; Meng, L. J.; Shi, J. Q.; Li, J. H.; Zhang, X. S.; Feng, M. B. Metal-organic frameworks/carbon-based materials for environmental remediation: A state-of-the-art mini-review. J. Environ. Manag. 2019, 232, 964–977.

    Article  CAS  Google Scholar 

  16. Chung, D. Y.; Lee, K. J.; Yu, S. H.; Kim, M.; Lee, S. Y.; Kim, O. H.; Park, H. J.; Sung, Y. E. Alveoli-inspired facile transport structure of N-doped porous carbon for electrochemical energy applications. Adv. Energy Mater. 2015, 5, 1401309.

    Article  Google Scholar 

  17. Bai, F. H.; Xia, Y. D.; Chen, B. L.; Su, H. Q.; Zhu, Y. Q. Preparation and carbon dioxide uptake capacity of N-doped porous carbon materials derived from direct carbonization of zeolitic imidazolate framework. Carbon 2014, 79, 213–226.

    Article  CAS  Google Scholar 

  18. Zhang, Y. N.; Dong, H. H.; Wang, R. Z.; Feng, P. H. Air humidity assisted sorption thermal battery governed by reaction wave model. Energy Stor. Mater. 2020, 27, 9–16.

    Google Scholar 

  19. Li, W.; Klemeš, J. J.; Wang, Q. W.; Zeng, M. Salt hydrate-based gas—solid thermochemical energy storage: Current progress, challenges, and perspectives. Renew. Sust. Energy Rev. 2022, 154, 111846.

    Article  CAS  Google Scholar 

  20. Jiang, F.; Ge, Z. W.; Ling, X.; Cang, D. Q.; Zhang, L. L.; Ding, Y. L. Improved thermophysical properties of shape-stabilized NaNO3 using a modified diatomite-based porous ceramic for solar thermal energy storage. Renew. Energy 2021, 179, 327–338.

    Article  CAS  Google Scholar 

  21. Donkers, P. A. J.; Sögütoglu, L. C.; Huinink, H. P.; Fischer, H. R.; Adan, O. C. G. A review of salt hydrates for seasonal heat storage in domestic applications. Appl. Energy 2017, 199, 45–68.

    Article  CAS  Google Scholar 

  22. Alva, G.; Lin, Y. X.; Fang, G. Y. An overview of thermal energy storage systems. Energy 2018, 144, 341–378.

    Article  Google Scholar 

  23. Zhang, Y. N.; Wang, R. Z.; Li, T. X. Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage. Energy 2018, 156, 240–249.

    Article  CAS  Google Scholar 

  24. Zhao, Y. J.; Wang, R. Z.; Zhang, Y. N.; Yu, N. Development of SrBr2 composite sorbents for a sorption thermal energy storage system to store low-temperature heat. Energy 2016, 115, 129–139.

    Article  CAS  Google Scholar 

  25. Solé, A.; Martorell, I.; Cabeza, L. F. State of the art on gas-solid thermochemical energy storage systems and reactors for building applications. Renew. Sust. Energy Rev. 2015, 47, 386–398.

    Article  Google Scholar 

  26. Yan, T.; Wang, R. Z.; Li, T. X.; Wang, L. W.; Fred, I. T. A review of promising candidate reactions for chemical heat storage. Renew. Sust. Energy Rev. 2015, 43, 13–31.

    Article  CAS  Google Scholar 

  27. Kubota, M.; Matsumoto, S.; Matsuda, H.; Huang, H. Y.; He, Z. H.; Yang, X. X. Chemical heat storage with LiOH/LiOH·H2O reaction for low-temperature heat below 373 K. Adv. Mater. Res. 2014, 953–954, 757–760.

    Article  Google Scholar 

  28. Kubota, M.; Matsumoto, S.; Matsuda, H. Enhancement of hydration rate of LiOH by combining with mesoporous carbon for low-temperature chemical heat storage. Appl. Therm. Eng. 2019, 150, 858–863.

    Article  CAS  Google Scholar 

  29. Li, W.; Klemeš, J. J.; Wang, Q. W.; Zeng, M. Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage. Renew. Energy 2020, 157, 920–940.

    Article  CAS  Google Scholar 

  30. Li, W.; Klemeš, J. J.; Wang, Q. W.; Zeng, M. Characterisation and sorption behaviour of LiOH-LiCl@EG composite sorbents for thermochemical energy storage with controllable thermal upgradeability. Chem. Eng. J. 2021, 421, 129586.

    Article  CAS  Google Scholar 

  31. Wang, R. T.; Jin, D. D.; Zhang, Y. B.; Wang, S. J.; Lang, J. W.; Yan, X. B.; Zhang, L. Engineering metal organic framework derived 3D nanostructures for high performance hybrid supercapacitors. J. Mater. Chem. A 2017, 5, 292–302.

    Article  CAS  Google Scholar 

  32. Qie, L.; Chen, W. M.; Xu, H. H.; Xiong, X. Q.; Jiang, Y.; Zou, F.; Hu, X. L.; Xin, Y.; Zhang, Z. L.; Huang, Y. H. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 2013, 6, 2497–2504.

    Article  Google Scholar 

  33. Zheng, X. Y.; Lv, W.; Tao, Y.; Shao, J. J.; Zhang, C.; Liu, D. H.; Luo, J. Y.; Wang, D. W.; Yang, Q. H. Oriented and interlinked porous carbon nanosheets with an extraordinary capacitive performance. Chem. Mater. 2014, 26, 6896–6903.

    Article  CAS  Google Scholar 

  34. Zhong, H. X.; Wang, J.; Zhang, Y. W.; Xu, W. L.; Xing, W.; Xu, D.; Zhang, Y. F.; Zhang, X. B. ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 14235–14239.

    Article  CAS  Google Scholar 

  35. Deng, X. Y.; Li, J. J.; Zhu, S.; Ma, L. Y.; Zhao, N. Q. Boosting the capacitive storage performance of MOF-derived carbon frameworks via structural modulation for supercapacitors. Energy Stor. Mater. 2019, 23, 491–498.

    Google Scholar 

  36. Li, Y. G.; Zhou, W.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Wei, F.; Idrobo, J. C.; Pennycook, S. J.; Dai, H. J. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 2012, 7, 394–400.

    Article  CAS  Google Scholar 

  37. Sevilla, M.; Mokaya, R. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ. Sci. 2014, 7, 1250–1280.

    Article  CAS  Google Scholar 

  38. Li, Z.; Xu, Z. W.; Tan, X. H.; Wang, H. L.; Holt, C. M. B.; Stephenson, T.; Olsen, B. C.; Mitlin, D. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci. 2013, 6, 871–878.

    Article  CAS  Google Scholar 

  39. Feng, L. X.; Wang, K.; Zhang, X.; Sun, X. Z.; Li, C.; Ge, X. B.; Ma, Y. W. Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv. Funct. Mater. 2018, 28, 1704463.

    Article  Google Scholar 

  40. Shen, J. M.; Li, Y.; Wang, C. H.; Luo, R.; Li, J. S.; Sun, X. Y.; Shen, J. Y.; Han, W. Q.; Wang, L. J. Hollow ZIFs-derived nanoporous carbon for efficient capacitive deionization. Electrochim. Acta 2018, 273, 34–42.

    Article  CAS  Google Scholar 

  41. Clark, R. J.; Mehrabadi, A.; Farid, M. State of the art on salt hydrate thermochemical energy storage systems for use in building applications. J. Energy Stor. 2020, 27, 101145.

    Article  Google Scholar 

  42. Li, S. J.; Huang, H. Y.; Li, J.; Kobayashi, N.; Osaka, Y.; He, Z. H.; Yuan, H. R. The effect of 3D carbon nanoadditives on lithium hydroxide monohydrate based composite materials for highly efficient low temperature thermochemical heat storage. RSC Adv. 2018, 8, 8199–8208.

    Article  CAS  Google Scholar 

  43. Wang, Q.; Xie, Y. Y.; Ding, B.; Yu, G. L.; Ye, F.; Xu, C. Structure and hydration state characterizations of MgSO4-zeolite 13x composite materials for long-term thermochemical heat storage. Sol Energy Mater. Sol. Cells 2019, 200, 110047.

    Article  CAS  Google Scholar 

  44. Li, S. J.; Huang, H. Y.; Yang, X. X.; Bai, Y.; Li, J.; Kobayashi, N.; Kubota, M. Hydrophilic substance assisted low temperature LiOH·H2O based composite thermochemical materials for thermal energy storage. Appl. Therm. Eng. 2018, 128, 706–711.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support from the Key-Area Research and Development Program of Guangdong Province (No. 2020B0202010004), the National Natural Science Foundation of China (No. 52071192), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS) (No. QYZDY-SSW-JSC038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianguo Zhao or Hongyu Huang.

Electronic Supplementary Material

12274_2022_4415_MOESM1_ESM.pdf

Fabrication of LiOH-metal organic framework derived hierarchical porous host carbon matrix composites for seasonal thermochemical energy storage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Li, S., Zhao, J. et al. Fabrication of LiOH-metal organic framework derived hierarchical porous host carbon matrix composites for seasonal thermochemical energy storage. Nano Res. 15, 8028–8038 (2022). https://doi.org/10.1007/s12274-022-4415-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4415-2

Keywords

Navigation