Skip to main content
Log in

Abnormal anti-oxidation behavior of hexagonal boron nitride grown on copper

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Atomic-layered hexagonal boron nitride (hBN) is expected to be the best two-dimensional (2D) anti-oxidation layer on metals for its incomparable impermeability, insulativity, and stability, as well as the progressive bottom-up growth techniques to ensure fast coating on metal surface in large area. However, its real anti-oxidation ability in practice is found to be unsatisfactory and nonuniform, and the main obstacle to achieving ideal anti-oxidation performance lies in unclear anti-oxidation behavior at special interface between 2D hBN and three-dimensional (3D) metals. Herein, system of monolayer hBN grown on copper (Cu) foils with various lattice orientations was grown to investigate the anti-oxidation behavior of different interlayer configurations. By using structural characterizations together with analysis of topography, we surprisingly found that stronger interlayer coupling led to worse anti-oxidation performance owing to fast diffusion of O2 through higher hBN corrugations generated at the commensurate hBN/Cu(111) configuration. In view of this, we developed the approach of cyclic reannealing that can effectively flatten corrugations and steps, and therefore improve the anti-oxidation performance to a great extent. This work provides a more in-depth understanding of anti-oxidation behavior of 2D materials grown on 3D metals, and a practical method to pave the way for its large-scale applications in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pryor, M. J. Cathodic protection of iron. Nature 1956, 178, 1245–1246.

    Article  CAS  Google Scholar 

  2. Su, Y.; Kravets, V. G.; Wong, S. L.; Waters, J.; Geim, A. K.; Nair, R. R. Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat. Commun. 2014, 5, 4843.

    Article  CAS  Google Scholar 

  3. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  Google Scholar 

  4. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

    Article  CAS  Google Scholar 

  5. Hu, S.; Lozada-Hidalgo, M.; Wang, F. C.; Mishchenko, A.; Schedin, F.; Nair, R. R.; Hill, E. W.; Boukhvalov, D. W.; Katsnelson, M. I.; Dryfe, R. A. W. et al. Proton transport through one-atom-thick crystals. Nature 2014, 516, 227–230.

    Article  CAS  Google Scholar 

  6. Cai, Q. R.; Scullion, D.; Gan, W.; Falin, A.; Zhang, S. Y.; Watanabe, K.; Taniguchi, T.; Chen, Y.; Santos, E. J. G.; Li, L. H. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv. 2019, 5, eaav0129.

    Article  Google Scholar 

  7. Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934.

    Article  CAS  Google Scholar 

  8. Cassabois, G.; Valvin, P.; Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 2015, 10, 262–266.

    Article  Google Scholar 

  9. Li, L. H.; Chen, Y. Atomically thin boron nitride: Unique properties and applications. Adv. Funct. Mater. 2015, 26, 2594–2608.

    Article  Google Scholar 

  10. Lu, G. Y.; Wu, T. R.; Yuan, Q. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Xie, X. M.; Jiang, M. H. Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy. Nat. Commun. 2019, 6, 6160.

    Article  Google Scholar 

  11. Lee, J. S.; Choi, S. H.; Yun, S. J.; Kim, Y. I.; Boandoh, S.; Park, J. H.; Shin, B. G.; Ko, H.; Lee, S. H.; Kim, Y. M. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 2018, 362, 817–821.

    Article  CAS  Google Scholar 

  12. Wang, L.; Xu, X. Z.; Zhang, L. N.; Qiao, R. X.; Wu, M. H.; Wang, Z. C.; Zhang, S.; Liang, J.; Zhang, Z. H.; Zhang, Z. B. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 2019, 570, 91–95.

    Article  CAS  Google Scholar 

  13. Chen, T. A.; Chuu, C. P.; Tseng, C. C.; Wen, C. K.; Wong, H. S. P.; Pan, S. Y.; Li, R. T.; Chao, T. A.; Chueh, W. C.; Zhang, Y. F. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 2020, 579, 219–223.

    Article  CAS  Google Scholar 

  14. Liu, C.; Wang, L.; Qi, J. J.; Liu, K. H. Designed growth of large-size 2D single crystals. Adv. Mater. 2020, 32, 2000046.

    Article  CAS  Google Scholar 

  15. Husain, E.; Narayanan, T. N.; Taha-Tijerina, J. J.; Vinod, S.; Vajtai, R.; Ajayan, P. M. Marine corrosion protective coatings of hexagonal boron nitride thin films on stainless steel. ACS Appl. Mater. Interfaces 2013, 5, 4129–4135.

    Article  CAS  Google Scholar 

  16. Liu, Z.; Gong, Y. J.; Zhou, W.; Ma, L. L.; Yu, J. J.; Idrobo, J. C.; Jung, J.; MacDonald, A. H.; Vajtai, R.; Lou, J. et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 2013, 4, 2541.

    Article  Google Scholar 

  17. Jiang, L. L.; Xiao, N.; Wang, B. R.; Grustan-Gutierrez, E.; Jing, X.; Babor, P.; Kolíbal, M.; Lu, G. Y.; Wu, T. R.; Wang, H. M. et al. High-resolution characterization of hexagonal boron nitride coatings exposed to aqueous and air oxidative environments. Nano Res. 2017, 10, 2046–2055.

    Article  CAS  Google Scholar 

  18. Khan, M. H.; Jamali, S. S.; Lyalin, A.; Molino, P. J.; Jiang, L.; Liu, H. K.; Taketsugu, T.; Huang, Z. G. Atomically thin hexagonal boron nitride nanofilm for Cu protection: The importance of film perfection. Adv. Mater. 2017, 29, 1603937.

    Article  Google Scholar 

  19. Chilkoor, G.; Karanam, S. P.; Star, S.; Shrestha, N.; Sani, R. K.; Upadhyayula, V. K. K.; Ghoshal, D.; Koratkar, N. A.; Meyyappan, M.; Gadhamshetty, V. Hexagonal boron nitride: The thinnest insulating barrier to microbial corrosion. ACS Nano 2018, 12, 2242–2252.

    Article  CAS  Google Scholar 

  20. Chilkoor, G.; Jawaharraj, K.; Vemuri, B.; Kutana, A.; Tripathi, M.; Kota, D.; Arif, T.; Filleter, T.; Dalton, A. B.; Yakobson, B. I. et al. Hexagonal boron nitride for sulfur corrosion inhibition. ACS Nano 2020, 14, 14809–14819.

    Article  CAS  Google Scholar 

  21. Liu, G. Z.; Wang, J.; Ge, Y. H.; Wang, Y. J.; Lu, S. Q.; Zhao, Y.; Tang, Y.; Soomro, A. M.; Hong, Q. M.; Yang, X. D. et al. Cu nanowires passivated with hexagonal boron nitride: An ultrastable, selectively transparent conductor. ACS Nano 2020, 14, 6761–6773.

    Article  CAS  Google Scholar 

  22. Ma, C. X.; Park, J.; Liu, L.; Kim, Y. S.; Yoon, M.; Baddorf, A. P.; Gu, G.; Li, A. P. Interplay between intercalated oxygen superstructures and monolayer h-BN on Cu(100). Phys. Rev. B 2015, 94, 064106.

    Article  Google Scholar 

  23. Xu, X. Z.; Yi, D.; Wang, Z. C.; Yu, J. C.; Zhang, Z. H.; Qiao, R. X.; Sun, Z. H.; Hu, Z. H.; Gao, P.; Peng, H. L. et al. Greatly enhanced anticorrosion of Cu by commensurate graphene coating. Adv. Mater. 2018, 30, 1702944.

    Article  Google Scholar 

  24. Li, J. D.; Li, Y.; Yin, J.; Ren, X. B.; Liu, X. F.; Jin, C. H.; Guo, W. L. Growth of polar hexagonal boron nitride monolayer on nonpolar copper with unique orientation. Small 2016, 12, 3645–3650.

    Article  CAS  Google Scholar 

  25. Zhang, Z. B.; Xu, X. Z.; Zhang, Z. H.; Wu, M. H.; Wang, J. H.; Liu, C.; Shang, N. Z.; Wang, J. X.; Gao, P.; Yu, D. P. et al. Identification of copper surface index by optical contrast. Adv. Mater. Interfaces 2018, 5, 1800377.

    Article  Google Scholar 

  26. Yin, X. L.; Li, Y. L.; Ke, F.; Lin, C. F.; Zhao, H. B.; Gan, L.; Luo, Z. T.; Zhao, R. G.; Heinz, T. F.; Hu, Z. H. Evolution of the Raman spectrum of graphene grown on copper upon oxidation of the substrate. Nano Res. 2014, 7, 1613–1622.

    Article  CAS  Google Scholar 

  27. Galbiati, M.; Stoot, A. C.; Mackenzie, D. M. A.; Bøggild, P.; Camilli, L. Real-time oxide evolution of copper protected by graphene and boron nitride barriers. Sci. Rep. 2017, 7, 39770.

    Article  CAS  Google Scholar 

  28. Roth, S.; Matsui, F.; Greber, T.; Osterwalder, J. Chemical vapor deposition and characterization of aligned and incommensurate graphene/hexagonal boron nitride heterostack on Cu(111). Nano Lett. 2013, 13, 2668–2675.

    Article  CAS  Google Scholar 

  29. Shin, H. C.; Jang, Y.; Kim, T. H.; Lee, J. H.; Oh, D. H.; Ahn, S. J.; Lee, J. H.; Moon, Y.; Park, J. H.; Yoo, S. J. et al. Epitaxial growth of a single-crystal hybridized boron nitride and graphene layer on a wide-band gap semiconductor. J. Am. Chem. Soc. 2015, 137, 6897–6905.

    Article  CAS  Google Scholar 

  30. Woods, C. R.; Britnell, L.; Eckmann, A.; Ma, R. S.; Lu, J. C.; Guo, H. M.; Lin, X.; Yu, G. L.; Cao, Y.; Gorbachev, R. V. et al. Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 2014, 10, 451–456.

    Article  CAS  Google Scholar 

  31. Corso, M.; Auwärter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science 2004, 303, 217–220.

    Article  CAS  Google Scholar 

  32. Laskowski, R.; Blaha, P.; Gallauner, T.; Schwarz, K. Single-layer model of the hexagonal boron nitride nanomesh on the Rh(111) surface. Phys. Rev. Lett. 2007, 98, 106802.

    Article  Google Scholar 

  33. Preobrajenski, A. B.; Vinogradov, A. S.; Ng, M. L.; Ćavar, E.; Westerström, R.; Mikkelsen, A.; Lundgren, E.; Mårtensson, N. Influence of chemical interaction at the lattice-mismatched h-BN/Rh(111) and h-BN/Pt(111) interfaces on the overlayer morphology. Phys. Rev. B 2007, 75, 245412.

    Article  Google Scholar 

  34. Joshi, S.; Ecija, D.; Koitz, R.; Iannuzzi, M.; Seitsonen, A. P.; Hutter, J.; Sachdev, H.; Vijayaraghavan, S.; Bischoff, F.; Seufert, K. et al. Boron nitride on Cu(111): An electronically corrugated monolayer. Nano Lett. 2012, 12, 5821–5828.

    Article  CAS  Google Scholar 

  35. Schwarz, M.; Riss, A.; Garnica, M.; Ducke, J.; Deimel, P. S.; Duncan, D. A.; Thakur, P. K.; Lee, T. L.; Seitsonen, A. P.; Barth, J. V. et al. Corrugation in the weakly interacting hexagonal-BN/Cu(111) system: Structure determination by combining noncontact atomic force microscopy and X-ray standing waves. ACS Nano 2017, 11, 9151–9161.

    Article  CAS  Google Scholar 

  36. Vallejos-Burgos, F.; Coudert, F. X.; Kaneko, K. Air separation with graphene mediated by nanowindow-rim concerted motion. Nat. Commun. 2018, 9, 1812.

    Article  Google Scholar 

  37. Lin, J. J.; Tay, R. Y.; Li, H. L.; Jing, L.; Tsang, S. H.; Wang, H.; Zhu, M. M.; McCulloch, D. G.; Teo, E. H. T. Smoothening of wrinkles in CVD-grown hexagonal boron nitride films. Nanoscale 2018, 10, 16243–16251.

    Article  CAS  Google Scholar 

  38. Yi, D.; Luo, D.; Wang, Z. J.; Dong, J. C.; Zhang, X.; Willinger, M. G.; Ruoff, R. S.; Ding, F. What drives metal-surface step bunching in graphene chemical vapor deposition. Phys. Rev. Lett. 2018, 120, 246101.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L. W., J. J. Q., and S. Z. contributed equally to this work. This work was supported by the Guangdong Major Project of Basic and Applied Basic Research (2021B0301030002), the National Natural Science Foundation of China (Nos. 52025023, 51991342, 52021006, 11888101, 12025203, and 12104493), the Key Research & Development Program of Guangdong Province (Nos. 2020B010189001, 2019B010931001, and 2018B030327001), the Strategic Priority Research Program of Chinese Academy of Sciences (Nos. XDB33000000 and XDB33030200), Beijing Natural Science Foundation (No. JQ19004), Natural Science Foundation of Jiangsu Province (No. BK20170426), the Initiative Program of State Key Laboratory of Tribology (No. SKLT2019B02), National Key R&D Program of China (No. 2018YFA0703700), Program from Chinese Academy of Sciences (No. E0K5231B11), and the Pearl River Talent Recruitment Program of Guangdong Province (No. 2019ZT08C321). The authors are grateful for the support from the Electron Microscopy Laboratory in Peking University for the use of electron microscope, and the Vacuum Interconnected Nanotech Workstation (NANO-X) of Suzhou Institute of Nano-Tech and Nano-Bionics, the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wang, Qunyang Li, Xuedong Bai or Kaihui Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Qi, J., Zhang, S. et al. Abnormal anti-oxidation behavior of hexagonal boron nitride grown on copper. Nano Res. 15, 7577–7583 (2022). https://doi.org/10.1007/s12274-022-4388-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4388-1

Keywords

Navigation